NOTE ON THE DAVENPORT CONSTANT FOR FINITE ABELIAN GROUPS WITH RANK THREE

被引:0
|
作者
Zakarczemny, M. [1 ]
机构
[1] Cracow Univ Technol, Fac Comp Sci & Telecommun, Dept Appl Math, Krakow, Poland
来源
关键词
Davenport constant; finite abelian group; zero-sum sequence; ZERO-SUM PROBLEMS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite abelian group and D(G) denote the Davenport constant of G. We derive new upper bound for the Davenport constant for all finite abelian groups of rank three. Our main result is that D(C-n1 circle plus C-n2 circle plus C-n3) <= (n(1) - 1) + (n(2) - 1) + (n(3) - 1) + 1 + (a(3) - 3)(n(1) - 1), where 1 < n(1)vertical bar n(2)vertical bar n(3) is an element of N and a(3) <= 20369 is a constant. Therefore, D(C-n1 circle plus C-n2 circle plus C-n3) grows linearly with the variables n(1), n(2), n(3). The new result is the given upper bound for a(3). Finally, we give an application of the Davenport constant to smooth numbers.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 50 条