Quadrature finite element method for elliptic eigenvalue problems

被引:14
|
作者
Solov’ev S.I. [1 ]
机构
[1] Department of Computational Mathematics, Institute of Computational Mathematics and Information Technologies, Kazan (Volga Region) Federal University, Kazan
基金
俄罗斯科学基金会;
关键词
curved finite element; eigenfunction; Eigenvalue; eigenvalue problem; finite element method; numerical integration; quadrature formula;
D O I
10.1134/S1995080217050341
中图分类号
学科分类号
摘要
A positive semi-definite eigenvalue problem for second-order self-adjoint elliptic differential operator definedon a bounded domain in the planewith smooth boundary and Dirichlet boundary condition is considered. This problem has a nondecreasing sequence of positive eigenvalues of finite multiplicity with a limit point at infinity. To the sequence of eigenvalues, there corresponds an orthonormal system of eigenfunctions. The original differential eigenvalue problem is approximated by the finite element method with numerical integration and Lagrange curved triangular finite elements of arbitrary order. Error estimates for approximate eigenvalues and eigenfunctions are established. © 2017, Pleiades Publishing, Ltd.
引用
收藏
页码:856 / 863
页数:7
相关论文
共 50 条
  • [21] An adaptive finite element method with asymptotic saturation for eigenvalue problems
    C. Carstensen
    J. Gedicke
    V. Mehrmann
    A. Międlar
    Numerische Mathematik, 2014, 128 : 615 - 634
  • [22] A new multigrid finite element method for the transmission eigenvalue problems
    Han, Jiayu
    Yang, Yidu
    Bi, Hai
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 292 : 96 - 106
  • [23] A mixed finite element method for fourth order eigenvalue problems
    Nataraj, Neela
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 213 (01) : 60 - 72
  • [24] Extension of the fixed grid finite element method to eigenvalue problems
    Maan, F. S.
    Querin, O. M.
    Barton, D. C.
    ADVANCES IN ENGINEERING SOFTWARE, 2007, 38 (8-9) : 607 - 617
  • [25] Enhancing finite element approximation for eigenvalue problems by projection method
    Liu, Huipo
    Yan, Ningning
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 233 : 81 - 91
  • [26] A multilevel finite element method for Fredholm integral eigenvalue problems
    Xie, Hehu
    Zhou, Tao
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 303 : 173 - 184
  • [27] An adaptive finite element method with asymptotic saturation for eigenvalue problems
    Carstensen, C.
    Gedicke, J.
    Mehrmann, V.
    Miedlar, A.
    NUMERISCHE MATHEMATIK, 2014, 128 (04) : 615 - 634
  • [28] NUMERICAL APPROXIMATION OF THE ELLIPTIC EIGENVALUE PROBLEM BY STABILIZED NONCONFORMING FINITE ELEMENT METHOD
    Weng, Zhifeng
    Zhai, Shuying
    Zeng, Yuping
    Yue, Xiaoqiang
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2021, 11 (03): : 1161 - 1176
  • [29] A Penalized Crouzeix–Raviart Element Method for Second Order Elliptic Eigenvalue Problems
    Jun Hu
    Limin Ma
    Journal of Scientific Computing, 2018, 74 : 1457 - 1479
  • [30] A Finite Element Method for Elliptic Dirichlet Boundary Control Problems
    Karkulik, Michael
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2020, 20 (04) : 827 - 843