A Finite Element Method for Elliptic Dirichlet Boundary Control Problems

被引:5
|
作者
Karkulik, Michael [1 ]
机构
[1] Univ Tecn Federico Santa Maria, Dept Matemat, Ave Espana 1680, Valparaiso, Chile
关键词
Optimal Control; Boundary Control; Finite Elements; NORMAL DERIVATIVES; ERROR ANALYSIS; APPROXIMATION; INTERPOLATION;
D O I
10.1515/cmam-2019-0104
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the finite element discretization of an optimal Dirichlet boundary control problem for the Laplacian, where the control is considered in H-1/2 (T). To avoid computing the latter norm numerically, we realize it using the H-1(Omega) norm of the harmonic extension of the control. We propose a mixed finite element discretization, where the harmonicity of the solution is included by a Lagrangian multiplier. In the case of convex polygonal domains, optimal error estimates in the H-1 and L-2 norm are proven. We also consider and analyze the case of control constrained problems.
引用
收藏
页码:827 / 843
页数:17
相关论文
共 50 条