Bounds for the Nakamura number

被引:0
|
作者
Josep Freixas
Sascha Kurz
机构
[1] Universitat Politècnica de Catalunya,Department of Mathematics and Engineering, School of Manresa
[2] University of Bayreuth,Department of Mathematics, Physics, and Computer Science
来源
Social Choice and Welfare | 2019年 / 52卷
关键词
Nakamura number; Stability; Simple games; Complete simple games; Weighted games; Bounds; 91A12; 91B14; 91B12;
D O I
暂无
中图分类号
学科分类号
摘要
The Nakamura number is an appropriate invariant of a simple game to study the existence of social equilibria and the possibility of cycles. For symmetric (quota) games its number can be obtained by an easy formula. For some subclasses of simple games the corresponding Nakamura number has also been characterized. However, in general, not much is known about lower and upper bounds depending on invariants of simple, complete or weighted games. Here, we survey such results and highlight connections with other game theoretic concepts.
引用
收藏
页码:607 / 634
页数:27
相关论文
共 50 条
  • [31] Bounds on the signed domatic number
    Volkmann, Lutz
    [J]. APPLIED MATHEMATICS LETTERS, 2011, 24 (02) : 196 - 198
  • [32] BOUNDS ON NUMBER OF FUZZY FUNCTIONS
    KAMEDA, T
    SADEH, E
    [J]. INFORMATION AND CONTROL, 1977, 35 (02): : 139 - 145
  • [33] On bounds for the cutting number of a graph
    Simon Mukwembi
    Senelani Dorothy Hove-Musekwa
    [J]. Indian Journal of Pure and Applied Mathematics, 2012, 43 : 637 - 649
  • [34] BOUNDS CONCERNING THE ALLIANCE NUMBER
    Bullington, Grady
    Eroh, Linda
    Winters, Steven J.
    [J]. MATHEMATICA BOHEMICA, 2009, 134 (04): : 387 - 398
  • [35] BOUNDS ON THE BONDAGE NUMBER OF A GRAPH
    HARTNELL, BL
    RALL, DF
    [J]. DISCRETE MATHEMATICS, 1994, 128 (1-3) : 173 - 177
  • [36] Bounds on the exponential domination number
    Bessy, Stephane
    Ochem, Pascal
    Rautenbach, Dieter
    [J]. DISCRETE MATHEMATICS, 2017, 340 (03) : 494 - 503
  • [37] BOUNDS ON THE DOMINATION NUMBER OF A GRAPH
    BRIGHAM, RC
    DUTTON, RD
    [J]. QUARTERLY JOURNAL OF MATHEMATICS, 1990, 41 (163): : 269 - 275
  • [38] Upper bounds on Nusselt number at finite Prandtl number
    Choffrut, Antoine
    Nobili, Camilla
    Otto, Felix
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (04) : 3860 - 3880
  • [39] Takashi NAKAMURA
    [J]. Seimitsu Kogaku Kaishi/Journal of the Japan Society for Precision Engineering, 2023, 89 (10):
  • [40] UPPER BOUNDS FOR THE NUMBER OF NUMBER FIELDS WITH ALTERNATING GALOIS GROUP
    Larson, Eric
    Rolen, Larry
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (02) : 499 - 503