Bounds for the Nakamura number

被引:0
|
作者
Josep Freixas
Sascha Kurz
机构
[1] Universitat Politècnica de Catalunya,Department of Mathematics and Engineering, School of Manresa
[2] University of Bayreuth,Department of Mathematics, Physics, and Computer Science
来源
Social Choice and Welfare | 2019年 / 52卷
关键词
Nakamura number; Stability; Simple games; Complete simple games; Weighted games; Bounds; 91A12; 91B14; 91B12;
D O I
暂无
中图分类号
学科分类号
摘要
The Nakamura number is an appropriate invariant of a simple game to study the existence of social equilibria and the possibility of cycles. For symmetric (quota) games its number can be obtained by an easy formula. For some subclasses of simple games the corresponding Nakamura number has also been characterized. However, in general, not much is known about lower and upper bounds depending on invariants of simple, complete or weighted games. Here, we survey such results and highlight connections with other game theoretic concepts.
引用
收藏
页码:607 / 634
页数:27
相关论文
共 50 条
  • [21] Some bounds for the number of blocks
    Noda, R
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2001, 22 (01) : 91 - 94
  • [22] Bounds on the Global Domination Number
    Desormeaux, Wyatt J.
    Gibson, Philip E.
    Haynes, Teresa W.
    [J]. QUAESTIONES MATHEMATICAE, 2015, 38 (04) : 563 - 572
  • [23] Bounds on the domination number of a digraph
    Hao, Guoliang
    Qian, Jianguo
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2018, 35 (01) : 64 - 74
  • [24] BOUNDS FOR THE COVERING NUMBER OF A GRAPH
    ABBOTT, HL
    LIU, AC
    [J]. DISCRETE MATHEMATICS, 1979, 25 (03) : 281 - 284
  • [25] LOWER BOUNDS ON THE NOETHER NUMBER
    Cziszter, K.
    Domokos, M.
    [J]. TRANSFORMATION GROUPS, 2019, 24 (03) : 823 - 834
  • [26] Bounds on the strong domination number
    Rautenbach, D
    [J]. DISCRETE MATHEMATICS, 2000, 215 (1-3) : 201 - 212
  • [27] Bounds for the Newton Number in the Plane
    Kemnitz A.
    Möller M.
    Wojzischke D.
    [J]. Results in Mathematics, 2002, 41 (1-2) : 128 - 139
  • [28] Bounds for the number of multidimensional partitions
    Oganesyan, Kristina
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2024, 120
  • [29] Bounds on the number of Diophantine quintuples
    Trudgian, Tim
    [J]. JOURNAL OF NUMBER THEORY, 2015, 157 : 233 - 249
  • [30] BOUNDS ON CONDITION NUMBER OF MATRIX
    黄鸿慈
    [J]. Science Bulletin, 1981, (07) : 668 - 668