Bounds for the Nakamura number

被引:0
|
作者
Josep Freixas
Sascha Kurz
机构
[1] Universitat Politècnica de Catalunya,Department of Mathematics and Engineering, School of Manresa
[2] University of Bayreuth,Department of Mathematics, Physics, and Computer Science
来源
Social Choice and Welfare | 2019年 / 52卷
关键词
Nakamura number; Stability; Simple games; Complete simple games; Weighted games; Bounds; 91A12; 91B14; 91B12;
D O I
暂无
中图分类号
学科分类号
摘要
The Nakamura number is an appropriate invariant of a simple game to study the existence of social equilibria and the possibility of cycles. For symmetric (quota) games its number can be obtained by an easy formula. For some subclasses of simple games the corresponding Nakamura number has also been characterized. However, in general, not much is known about lower and upper bounds depending on invariants of simple, complete or weighted games. Here, we survey such results and highlight connections with other game theoretic concepts.
引用
收藏
页码:607 / 634
页数:27
相关论文
共 50 条
  • [1] Bounds for the Nakamura number
    Freixas, Josep
    Kurz, Sascha
    [J]. SOCIAL CHOICE AND WELFARE, 2019, 52 (04) : 607 - 634
  • [2] Bounds on the burning number
    Bessy, Stephane
    Bonato, Anthony
    Janssen, Jeannette
    Rautenbach, Dieter
    Roshanbin, Elham
    [J]. DISCRETE APPLIED MATHEMATICS, 2018, 235 : 16 - 22
  • [3] BOUNDS FOR CLASS NUMBER
    QUEME, R
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1988, 307 (06): : 199 - 202
  • [4] BOUNDS FOR CHROMATIC NUMBER
    WILF, HS
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (05): : A618 - &
  • [5] Bounds on the localization number
    Bonato, Anthony
    Kinnersley, William B.
    [J]. JOURNAL OF GRAPH THEORY, 2020, 94 (04) : 579 - 596
  • [6] Number knows no bounds
    Brannon, EM
    [J]. TRENDS IN COGNITIVE SCIENCES, 2003, 7 (07) : 279 - 281
  • [7] Bounds for the number of mappings of graphs and for the number of subgraphs
    Leontovich, A.M.
    [J]. Problems of information transmission, 1988, 23 (04) : 296 - 311
  • [8] BOUNDS ON THE NUMBER OF EULERIAN ORIENTATIONS
    SCHRIJVER, A
    [J]. COMBINATORICA, 1983, 3 (3-4) : 375 - 380
  • [9] Bounds of Discriminants of Number Fields
    Hu, Pei-Chu
    [J]. P-ADIC NUMBERS ULTRAMETRIC ANALYSIS AND APPLICATIONS, 2013, 5 (04) : 302 - 312
  • [10] BOUNDS ON NUMBER OF THRESHOLD FUNCTIONS
    SMITH, DR
    [J]. IEEE TRANSACTIONS ON ELECTRONIC COMPUTERS, 1966, EC15 (03): : 368 - &