Asymptotic normality of wavelet estimator in heteroscedastic model with α-mixing errors

被引:0
|
作者
Hanying Liang
机构
[1] Tongji University,Department of Mathematics
关键词
-mixing; asymptotic normality; heteroscedastic regression model; wavelet estimator;
D O I
暂无
中图分类号
学科分类号
摘要
Consider heteroscedastic regression model Yni = g(xni) + σniɛni (1 ≤ i ≤ n), where σni2 = f(uni), the design points (xni, uni) are known and nonrandom, g(·) and f(·) are unknown functions defined on closed interval [0, 1], and the random errors {ɛni, 1 ≤ i ≤ n} are assumed to have the same distribution as {ξi, 1 ≤ i ≤ n}, which is a stationary and α-mixing time series with Eξi = 0. Under appropriate conditions, we study asymptotic normality of wavelet estimators of g(·) and f(·). Finite sample behavior of the estimators is investigated via simulations, too.
引用
下载
收藏
页码:725 / 737
页数:12
相关论文
共 50 条
  • [11] Asymptotic Normality of Estimators in Heteroscedastic Semi-Parametric Model with Strong Mixing Errors
    Zhang, Jing-Jing
    Liang, Han-Ying
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2012, 41 (12) : 2172 - 2201
  • [12] UNIFORMLY ASYMPTOTIC NORMALITY OF THE WEIGHTED ESTIMATOR IN NONPARAMETRIC REGRESSION MODEL WITH φ-MIXING ERRORS
    Zhuansun, Chenlu
    Zhang, Gongxuan
    Yan, Kedong
    MATHEMATICA SLOVACA, 2022, 72 (03) : 797 - 806
  • [13] Asymptotic normality for the estimator of non parametric regression model under φ-mixing errors
    Zheng, Lulu
    Ding, Yang
    Wang, Xuejun
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (14) : 6764 - 6773
  • [14] Asymptotic normality of a wavelet estimator for asymptotically negatively associated errors
    Tang, Xufei
    Xi, Mengmei
    Wu, Yi
    Wang, Xuejun
    STATISTICS & PROBABILITY LETTERS, 2018, 140 : 191 - 201
  • [15] Asymptotic normality of estimators in heteroscedastic errors-in-variables model
    Jing-Jing Zhang
    Han-Ying Liang
    Amei Amei
    AStA Advances in Statistical Analysis, 2014, 98 : 165 - 195
  • [16] Asymptotic normality of estimators in heteroscedastic errors-in-variables model
    Zhang, Jing-Jing
    Liang, Han-Ying
    Amei, Amei
    ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2014, 98 (02) : 165 - 195
  • [17] Consistency and asymptotic normality of wavelet estimator in a nonparametric regression model
    Shen, Aiting
    Li, Xiang
    Zhang, Yajing
    Qiu, Yige
    Wang, Xuejun
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2021, 93 (06) : 868 - 885
  • [18] Asymptotic normality of the multiscale wavelet density estimator
    Wu, DW
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1996, 25 (09) : 1957 - 1970
  • [19] Asymptotic Normality of the Multiscale Wavelet Density Estimator
    Wu, D. W.
    Communications in Statistics. Part A: Theory and Methods, 25 (09):
  • [20] Asymptotic Optimality of the Nonnegative Garrote Estimator Under Heteroscedastic Errors
    CHEN Xiuping
    CAI Guanghui
    GAO Yan
    ZHAO Shangwei
    Journal of Systems Science & Complexity, 2020, 33 (02) : 545 - 562