Asymptotic normality for the estimator of non parametric regression model under φ-mixing errors

被引:2
|
作者
Zheng, Lulu [1 ]
Ding, Yang [1 ]
Wang, Xuejun [1 ]
机构
[1] Anhui Univ, Sch Math Sci, Hefei 230601, Peoples R China
基金
中国国家自然科学基金;
关键词
Asymptotic normality; Non parametric regression model; phi-Mixing random variables; 62G20; FIXED-DESIGN REGRESSION; NONPARAMETRIC MULTIPLE-REGRESSION; LINEAR-TIME SERIES; RANDOM-VARIABLES; COMPLETE CONVERGENCE; SEQUENCES; ARRAYS; SUMS;
D O I
10.1080/03610926.2015.1134574
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, by using the Rosenthal-type inequality and the Bernstein's big-block and small-block procedure, we establish the asymptotic normality for the estimators of non parametric regression model based on phi-mixing errors. The result obtained in the article generalizes some corresponding ones for some dependent random variables.
引用
收藏
页码:6764 / 6773
页数:10
相关论文
共 50 条