ASYMPTOTIC NORMALITY OF WAVELET ESTIMATOR IN HETEROSCEDASTIC MODEL WITH α-MIXING ERRORS

被引:0
|
作者
Hanying LIANG Department of Mathematics
机构
基金
中国国家自然科学基金;
关键词
α-mixing; asymptotic normality; heteroscedastic regression model; wavelet estimator;
D O I
暂无
中图分类号
O212.1 [一般数理统计];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider heteroscedastic regression model Y=g(x)+σε(1≤i≤n),whereσ~2=f(u),the design points(x,u) are known and nonrandom,g(·) and f(·) are unknown functions defined on closed interval[0,1],and the random errors {ε,1≤i≤n} are assumed to have the same distribution as {ξ,≤i≤n},which is a stationary andα-mixing time series with Eξ=0. Under appropriate conditions,we study asymptotic normality of wavelet estimators of g(·) and f(·). Finite sample behavior of the estimators is investigated via simulations,too.
引用
收藏
页码:725 / 737
页数:13
相关论文
共 50 条