Machine learning based early warning system enables accurate mortality risk prediction for COVID-19

被引:0
|
作者
Yue Gao
Guang-Yao Cai
Wei Fang
Hua-Yi Li
Si-Yuan Wang
Lingxi Chen
Yang Yu
Dan Liu
Sen Xu
Peng-Fei Cui
Shao-Qing Zeng
Xin-Xia Feng
Rui-Di Yu
Ya Wang
Yuan Yuan
Xiao-Fei Jiao
Jian-Hua Chi
Jia-Hao Liu
Ru-Yuan Li
Xu Zheng
Chun-Yan Song
Ning Jin
Wen-Jian Gong
Xing-Yu Liu
Lei Huang
Xun Tian
Lin Li
Hui Xing
Ding Ma
Chun-Rui Li
Fei Ye
Qing-Lei Gao
机构
[1] Huazhong University of Science and Technology,National Medical Center for Major Public Health Events, Tongji Hospital, Tongji Medical College
[2] Huazhong University of Science and Technology,Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College
[3] Wuhan University,GNSS Research Center
[4] City University of Hong Kong Shenzhen Research Institute,Department of Gastroenterology, Tongji Hospital, Tongji Medical College
[5] Huazhong University of Science and Technology,Department of Obstetrics and Gynecology, The Central Hospital of Wuhan, Tongji Medical College
[6] Huazhong University of Science and Technology,Department of Obstetrics and Gynecology, Xiangyang Central Hospital
[7] Affiliated Hospital of Hubei University of Arts and Science,Department of Hematology, Tongji Hospital, Tongji Medical College
[8] Huazhong University of Science and Technology,Department of Neurosurgery, Tongji Hospital, Tongji Medical College
[9] Huazhong University of Science and Technology,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Soaring cases of coronavirus disease (COVID-19) are pummeling the global health system. Overwhelmed health facilities have endeavored to mitigate the pandemic, but mortality of COVID-19 continues to increase. Here, we present a mortality risk prediction model for COVID-19 (MRPMC) that uses patients’ clinical data on admission to stratify patients by mortality risk, which enables prediction of physiological deterioration and death up to 20 days in advance. This ensemble model is built using four machine learning methods including Logistic Regression, Support Vector Machine, Gradient Boosted Decision Tree, and Neural Network. We validate MRPMC in an internal validation cohort and two external validation cohorts, where it achieves an AUC of 0.9621 (95% CI: 0.9464–0.9778), 0.9760 (0.9613–0.9906), and 0.9246 (0.8763–0.9729), respectively. This model enables expeditious and accurate mortality risk stratification of patients with COVID-19, and potentially facilitates more responsive health systems that are conducive to high risk COVID-19 patients.
引用
收藏
相关论文
共 50 条
  • [21] Prediction of mortality risk and duration of hospitalization of COVID-19 patients with chronic comorbidities based on machine learning algorithms
    Amiri, Parastoo
    Montazeri, Mahdieh
    Ghasemian, Fahimeh
    Asadi, Fatemeh
    Niksaz, Saeed
    Sarafzadeh, Farhad
    Khajouei, Reza
    [J]. DIGITAL HEALTH, 2023, 9
  • [22] Machine learning-based mortality prediction models for smoker COVID-19 patients
    Ali Sharifi-Kia
    Azin Nahvijou
    Abbas Sheikhtaheri
    [J]. BMC Medical Informatics and Decision Making, 23
  • [23] Electrocardiogram-based mortality prediction in patients with COVID-19 using machine learning
    R. R. van de Leur
    H. Bleijendaal
    K. Taha
    T. Mast
    J. M. I. H. Gho
    M. Linschoten
    B. van Rees
    M. T. H. M. Henkens
    S. Heymans
    N. Sturkenboom
    R. A. Tio
    J. A. Offerhaus
    W. L. Bor
    M. Maarse
    H. E. Haerkens-Arends
    M. Z. H. Kolk
    A. C. J. van der Lingen
    J. J. Selder
    E. E. Wierda
    P. F. M. M. van Bergen
    M. M. Winter
    A. H. Zwinderman
    P. A. Doevendans
    P. van der Harst
    Y. M. Pinto
    F. W. Asselbergs
    R. van Es
    F. V. Y. Tjong
    [J]. Netherlands Heart Journal, 2022, 30 : 312 - 318
  • [24] Electrocardiogram-based mortality prediction in patients with COVID-19 using machine learning
    van de Leur, R. R.
    Bleijendaal, H.
    Taha, K.
    Mast, T.
    Gho, J. M. I. H.
    Linschoten, M.
    van Rees, B.
    Henkens, M. T. H. M.
    Heymans, S.
    Sturkenboom, N.
    Tio, R. A.
    Offerhaus, J. A.
    Bor, W. L.
    Maarse, M.
    Haerkens-Arends, H. E.
    Kolk, M. Z. H.
    van der Lingen, A. C. J.
    Selder, J. J.
    Wierda, E. E.
    van Bergen, P. F. M. M.
    Winter, M. M.
    Zwinderman, A. H.
    Doevendans, P. A.
    van der Harst, P.
    Pinto, Y. M.
    Asselbergs, F. W.
    van Es, R.
    Tjong, F. V. Y.
    [J]. NETHERLANDS HEART JOURNAL, 2022, 30 (06) : 312 - 318
  • [25] Machine learning-based mortality prediction models for smoker COVID-19 patients
    Sharifi-Kia, Ali
    Nahvijou, Azin
    Sheikhtaheri, Abbas
    [J]. BMC MEDICAL INFORMATICS AND DECISION MAKING, 2023, 23 (01)
  • [26] Multivariable mortality risk prediction using machine learning for COVID-19 patients at admission (AICOVID)
    Kar, Sujoy
    Chawla, Rajesh
    Haranath, Sai Praveen
    Ramasubban, Suresh
    Ramakrishnan, Nagarajan
    Vaishya, Raju
    Sibal, Anupam
    Reddy, Sangita
    [J]. SCIENTIFIC REPORTS, 2021, 11 (01)
  • [27] Multivariable mortality risk prediction using machine learning for COVID-19 patients at admission (AICOVID)
    Sujoy Kar
    Rajesh Chawla
    Sai Praveen Haranath
    Suresh Ramasubban
    Nagarajan Ramakrishnan
    Raju Vaishya
    Anupam Sibal
    Sangita Reddy
    [J]. Scientific Reports, 11
  • [28] Severe/critical COVID-19 early warning system based on machine learning algorithms using novel imaging scores
    Li, Qiu-Yu
    An, Zhuo-Yu
    Pan, Zi-Han
    Wang, Zi-Zhen
    Wang, Yi-Ren
    Zhang, Xi-Gong
    Shen, Ning
    [J]. WORLD JOURNAL OF CLINICAL CASES, 2023, 11 (12)
  • [29] Severe/critical COVID-19 early warning system based on machine learning algorithms using novel imaging scores
    Qiu-Yu Li
    Zhuo-Yu An
    Zi-Han Pan
    Zi-Zhen Wang
    Yi-Ren Wang
    Xi-Gong Zhang
    Ning Shen
    [J]. World Journal of Clinical Cases, 2023, (12) : 2716 - 2728
  • [30] Machine learning prediction of COVID-19 mortality in cancer patients.
    Dienstmann, Rodrigo
    Menezes, Marcia
    e Silva, Matheus Costa
    Cruz, Heloisa
    Paes, Rafael
    da Silva, Jussaine Alves
    Messias, Anna Carolina R.
    De Marchi, Pedro
    Canedo, Jorge Alexandre
    De Melo, Andreia Cristina
    Jacome, Alexandre A.
    Reinert, Tomas
    Figueiredo Ferreira, Barbara Sodre
    Mathias, Clarissa
    Barrios, Carlos H.
    Ferreira, Carlos G. M.
    Ferrari, Bruno Lemos
    [J]. JOURNAL OF CLINICAL ONCOLOGY, 2021, 39 (15)