Multivariable mortality risk prediction using machine learning for COVID-19 patients at admission (AICOVID)

被引:0
|
作者
Sujoy Kar
Rajesh Chawla
Sai Praveen Haranath
Suresh Ramasubban
Nagarajan Ramakrishnan
Raju Vaishya
Anupam Sibal
Sangita Reddy
机构
[1] Apollo Hospitals,
[2] Indraprastha Apollo Hospitals,undefined
[3] Apollo Multispecialty Hospitals,undefined
[4] Apollo Hospitals,undefined
[5] Indraprastha Apollo Hospitals,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In Coronavirus disease 2019 (COVID-19), early identification of patients with a high risk of mortality can significantly improve triage, bed allocation, timely management, and possibly, outcome. The study objective is to develop and validate individualized mortality risk scores based on the anonymized clinical and laboratory data at admission and determine the probability of Deaths at 7 and 28 days. Data of 1393 admitted patients (Expired—8.54%) was collected from six Apollo Hospital centers (from April to July 2020) using a standardized template and electronic medical records. 63 Clinical and Laboratory parameters were studied based on the patient’s initial clinical state at admission and laboratory parameters within the first 24 h. The Machine Learning (ML) modelling was performed using eXtreme Gradient Boosting (XGB) Algorithm. ‘Time to event’ using Cox Proportional Hazard Model was used and combined with XGB Algorithm. The prospective validation cohort was selected of 977 patients (Expired—8.3%) from six centers from July to October 2020. The Clinical API for the Algorithm is http://20.44.39.47/covid19v2/page1.php being used prospectively. Out of the 63 clinical and laboratory parameters, Age [adjusted hazard ratio (HR) 2.31; 95% CI 1.52–3.53], Male Gender (HR 1.72, 95% CI 1.06–2.85), Respiratory Distress (HR 1.79, 95% CI 1.32–2.53), Diabetes Mellitus (HR 1.21, 95% CI 0.83–1.77), Chronic Kidney Disease (HR 3.04, 95% CI 1.72–5.38), Coronary Artery Disease (HR 1.56, 95% CI − 0.91 to 2.69), respiratory rate > 24/min (HR 1.54, 95% CI 1.03–2.3), oxygen saturation below 90% (HR 2.84, 95% CI 1.87–4.3), Lymphocyte% in DLC (HR 1.99, 95% CI 1.23–2.32), INR (HR 1.71, 95% CI 1.31–2.13), LDH (HR 4.02, 95% CI 2.66–6.07) and Ferritin (HR 2.48, 95% CI 1.32–4.74) were found to be significant. The performance parameters of the current model is at AUC ROC Score of 0.8685 and Accuracy Score of 96.89. The validation cohort had the AUC of 0.782 and Accuracy of 0.93. The model for Mortality Risk Prediction provides insight into the COVID Clinical and Laboratory Parameters at admission. It is one of the early studies, reflecting on ‘time to event’ at the admission, accurately predicting patient outcomes.
引用
收藏
相关论文
共 50 条
  • [1] Multivariable mortality risk prediction using machine learning for COVID-19 patients at admission (AICOVID)
    Kar, Sujoy
    Chawla, Rajesh
    Haranath, Sai Praveen
    Ramasubban, Suresh
    Ramakrishnan, Nagarajan
    Vaishya, Raju
    Sibal, Anupam
    Reddy, Sangita
    [J]. SCIENTIFIC REPORTS, 2021, 11 (01)
  • [2] Covid-19 Mortality Risk Prediction Model Using Machine Learning
    Sanchez-Galvez, Alba Maribel
    Sanchez-Galvez, Sully
    Alvarez-Gonzalez, Ricardo
    Rojas-Alarcon, Frida
    [J]. COMPUTACION Y SISTEMAS, 2023, 27 (04): : 881 - 888
  • [3] Using machine learning in prediction of ICU admission, mortality, and length of stay in the early stage of admission of COVID-19 patients
    Sara Saadatmand
    Khodakaram Salimifard
    Reza Mohammadi
    Alex Kuiper
    Maryam Marzban
    Akram Farhadi
    [J]. Annals of Operations Research, 2023, 328 : 1043 - 1071
  • [4] Using machine learning in prediction of ICU admission, mortality, and length of stay in the early stage of admission of COVID-19 patients
    Saadatmand, Sara
    Salimifard, Khodakaram
    Mohammadi, Reza
    Kuiper, Alex
    Marzban, Maryam
    Farhadi, Akram
    [J]. ANNALS OF OPERATIONS RESEARCH, 2023, 328 (01) : 1043 - 1071
  • [5] Early Mortality Risk Prediction in Covid-19 Patients Using an Ensemble of Machine Learning Models
    Walia, Harsh
    Jeevaraj, S.
    [J]. 2021 INTERNATIONAL CONFERENCE ON COMPUTATIONAL PERFORMANCE EVALUATION (COMPE-2021), 2021, : 965 - 970
  • [6] Early prediction of mortality risk among patients with severe COVID-19, using machine learning
    Hu, Chuanyu
    Liu, Zhenqiu
    Jiang, Yanfeng
    Shi, Oumin
    Zhang, Xin
    Xu, Kelin
    Suo, Chen
    Wang, Qin
    Song, Yujing
    Yu, Kangkang
    Mao, Xianhua
    Wu, Xuefu
    Wu, Mingshan
    Shi, Tingting
    Jiang, Wei
    Mu, Lina
    Tully, Damien C.
    Xu, Lei
    Jin, Li
    Li, Shusheng
    Tao, Xuejin
    Zhang, Tiejun
    Chen, Xingdong
    [J]. INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2020, 49 (06) : 1918 - 1929
  • [7] A machine-learning parsimonious multivariable predictive model of mortality risk in patients with Covid-19
    Murri, Rita
    Lenkowicz, Jacopo
    Masciocchi, Carlotta
    Iacomini, Chiara
    Fantoni, Massimo
    Damiani, Andrea
    Marchetti, Antonio
    Sergi, Paolo Domenico Angelo
    Arcuri, Giovanni
    Cesario, Alfredo
    Patarnello, Stefano
    Antonelli, Massimo
    Bellantone, Rocco
    Bernabei, Roberto
    Boccia, Stefania
    Calabresi, Paolo
    Cambieri, Andrea
    Cauda, Roberto
    Colosimo, Cesare
    Crea, Filippo
    De Maria, Ruggero
    De Stefano, Valerio
    Franceschi, Francesco
    Gasbarrini, Antonio
    Parolini, Ornella
    Richeldi, Luca
    Sanguinetti, Maurizio
    Urbani, Andrea
    Zega, Maurizio
    Scambia, Giovanni
    Valentini, Vincenzo
    [J]. SCIENTIFIC REPORTS, 2021, 11 (01)
  • [8] A machine-learning parsimonious multivariable predictive model of mortality risk in patients with Covid-19
    Rita Murri
    Jacopo Lenkowicz
    Carlotta Masciocchi
    Chiara Iacomini
    Massimo Fantoni
    Andrea Damiani
    Antonio Marchetti
    Paolo Domenico Angelo Sergi
    Giovanni Arcuri
    Alfredo Cesario
    Stefano Patarnello
    Massimo Antonelli
    Rocco Bellantone
    Roberto Bernabei
    Stefania Boccia
    Paolo Calabresi
    Andrea Cambieri
    Roberto Cauda
    Cesare Colosimo
    Filippo Crea
    Ruggero De Maria
    Valerio De Stefano
    Francesco Franceschi
    Antonio Gasbarrini
    Ornella Parolini
    Luca Richeldi
    Maurizio Sanguinetti
    Andrea Urbani
    Maurizio Zega
    Giovanni Scambia
    Vincenzo Valentini
    [J]. Scientific Reports, 11
  • [9] Symptom Prediction and Mortality Risk Calculation for COVID-19 Using Machine Learning
    Jamshidi, Elham
    Rahi, Sahand
    Mansouri, Nahal
    [J]. EUROPEAN RESPIRATORY JOURNAL, 2021, 58
  • [10] Symptom Prediction and Mortality Risk Calculation for COVID-19 Using Machine Learning
    Jamshidi, Elham
    Asgary, Amirhossein
    Tavakoli, Nader
    Zali, Alireza
    Dastan, Farzaneh
    Daaee, Amir
    Badakhshan, Mohammadtaghi
    Esmaily, Hadi
    Jamaldini, Seyed Hamid
    Safari, Saeid
    Bastanhagh, Ehsan
    Maher, Ali
    Babajani, Amirhesam
    Mehrazi, Maryam
    Kashi, Mohammad Ali Sendani
    Jamshidi, Masoud
    Sendani, Mohammad Hassan
    Rahi, Sahand Jamal
    Mansouri, Nahal
    [J]. FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2021, 4