Interlacing Properties and Bounds for Zeros of Some Quasi-Orthogonal Laguerre Polynomials

被引:0
|
作者
Kathy Driver
Martin E. Muldoon
机构
[1] University of Cape Town,Department of Mathematics and Applied Mathematics
[2] York University,Department of Mathematics and Statistics
关键词
Interlacing of zeros; Stieltjes’ Theorem; Laguerre polynomials; Quasi-orthogonal polynomials; Primary 33C45; Secondary 26C10;
D O I
暂无
中图分类号
学科分类号
摘要
We discuss interlacing properties of zeros of Laguerre polynomials of different degree in quasi-orthogonal sequences {Ln(α)}n=0∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{L_{n}^{(\alpha )}\} _{n=0}^\infty $$\end{document} characterized by -2<α<-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-2<\alpha <-1$$\end{document}. Interlacing of zeros of Ln(α),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{n}^{(\alpha )},$$\end{document}-2<α<-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-2<\alpha <-1$$\end{document}, with zeros of orthogonal Laguerre polynomials is also investigated. Upper and lower bounds for the negative zero of Ln(α),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{n}^{(\alpha )},$$\end{document}-2<α<-1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-2<\alpha < -1,$$\end{document} are derived.
引用
收藏
页码:645 / 654
页数:9
相关论文
共 50 条