Monotonicity of zeros;
Associated Jacobi polynomials;
Associated Gegenbauer polynomials;
q-Meixner-Pollaczek polynomials;
Interlacing of zeros;
Orthogonal polynomials on the unit ball;
JACOBI-POLYNOMIALS;
ULTRASPHERICAL POLYNOMIALS;
INEQUALITIES;
D O I:
10.1016/j.amc.2010.11.032
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We investigate monotonicity properties of extremal zeros of orthogonal polynomials depending on a parameter. Using a functional analysis method we prove the monotonicity of extreme zeros of associated Jacobi, associated Gegenbauer and q-Meixner-Pollaczek polynomials. We show how these results can be applied to prove interlacing of zeros of orthogonal polynomials with shifted parameters and to determine optimally localized polynomials on the unit ball. (C) 2010 Elsevier Inc. All rights reserved.
机构:
Univ Estadual Paulista, IBILCE, Dept Matemat Aplicada, BR-15054000 Sao Jose Do Rio Preto, SP, BrazilUniv Estadual Paulista, IBILCE, Dept Matemat Aplicada, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil
Dimitrov, Dimitar K.
Lun, Yen Chi
论文数: 0引用数: 0
h-index: 0
机构:
Univ Estadual Campinas, Inst Matemat Estat & Computacao Cient, BR-13081970 Campinas, SP, BrazilUniv Estadual Paulista, IBILCE, Dept Matemat Aplicada, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil