Monotonicity of zeros;
Associated Jacobi polynomials;
Associated Gegenbauer polynomials;
q-Meixner-Pollaczek polynomials;
Interlacing of zeros;
Orthogonal polynomials on the unit ball;
JACOBI-POLYNOMIALS;
ULTRASPHERICAL POLYNOMIALS;
INEQUALITIES;
D O I:
10.1016/j.amc.2010.11.032
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We investigate monotonicity properties of extremal zeros of orthogonal polynomials depending on a parameter. Using a functional analysis method we prove the monotonicity of extreme zeros of associated Jacobi, associated Gegenbauer and q-Meixner-Pollaczek polynomials. We show how these results can be applied to prove interlacing of zeros of orthogonal polynomials with shifted parameters and to determine optimally localized polynomials on the unit ball. (C) 2010 Elsevier Inc. All rights reserved.
机构:
UNESP Univ Estadual Paulista, IBILCE, DMAp, BR-15054000 Sao Jose Do Rio Preto, SP, BrazilUNESP Univ Estadual Paulista, IBILCE, DMAp, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil
Dimitrov, D. K.
Ismail, M. E. H.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Cent Florida, Dept Math, Orlando, FL 32816 USAUNESP Univ Estadual Paulista, IBILCE, DMAp, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil
Ismail, M. E. H.
Ranga, A. Sri
论文数: 0引用数: 0
h-index: 0
机构:
UNESP Univ Estadual Paulista, IBILCE, DMAp, BR-15054000 Sao Jose Do Rio Preto, SP, BrazilUNESP Univ Estadual Paulista, IBILCE, DMAp, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil