A Boundedness Criterion via Atoms for Linear Operators in Hardy Spaces

被引:0
|
作者
Dachun Yang
Yuan Zhou
机构
[1] Beijing Normal University,School of Mathematical Sciences, Laboratory of Mathematics and Complex Systems, Ministry of Education
来源
关键词
Linear operator; Boundedness criterion; Hardy space; Atom; Calderón reproducing formula; Quasi-Banach space; 42B20; 42B30; 42B25;
D O I
暂无
中图分类号
学科分类号
摘要
Let p∈(0,1] and s≥[n(1/p−1)], where [n(1/p−1)] denotes the maximal integer no more than n(1/p−1). In this paper, the authors prove that a linear operator T extends to a bounded linear operator from the Hardy space Hp(ℝn) to some quasi-Banach space ℬ if and only if T maps all (p,2,s)-atoms into uniformly bounded elements of ℬ.
引用
收藏
页码:207 / 218
页数:11
相关论文
共 50 条
  • [1] A Boundedness Criterion via Atoms for Linear Operators in Hardy Spaces
    Yang, Dachun
    Zhou, Yuan
    [J]. CONSTRUCTIVE APPROXIMATION, 2009, 29 (02) : 207 - 218
  • [2] Boundedness of linear operators via atoms on Hardy spaces with non-doubling measures
    Yang, Dachun
    Yang, Dongyong
    [J]. GEORGIAN MATHEMATICAL JOURNAL, 2011, 18 (02) : 377 - 397
  • [3] Boundedness of sublinear operators in Hardy spaces on RD-spaces via atoms
    Yang, Dachun
    Zhou, Yuan
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 339 (01) : 622 - 635
  • [4] Boundedness of operators on Hardy spaces via atomic decompositions
    Bownik, M
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (12) : 3535 - 3542
  • [5] Boundedness of operators on Hardy spaces
    Ferenc, Weisz
    [J]. ACTA SCIENTIARUM MATHEMATICARUM, 2012, 78 (3-4): : 541 - 557
  • [6] BOUNDEDNESS OF OPERATORS ON HARDY SPACES
    Zhao, Kai
    Han, Yongsheng
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2010, 14 (02): : 319 - 327
  • [7] Boundedness of operators on Hardy spaces
    Ferenc Weisz
    [J]. Acta Scientiarum Mathematicarum, 2012, 78 (3-4): : 541 - 557
  • [8] Boundedness of Convolution Operators on Hardy Spaces
    Belinsky, Eduard
    Liflyand, Elijah
    [J]. COMPUTATIONAL METHODS AND FUNCTION THEORY, 2019, 19 (02) : 183 - 191
  • [9] Boundedness of Convolution Operators on Hardy Spaces
    Eduard Belinsky
    Elijah Liflyand
    [J]. Computational Methods and Function Theory, 2019, 19 : 183 - 191
  • [10] Boundedness of Hausdorff operators on Lebesgue spaces and Hardy spaces
    Chen, Jiecheng
    Dai, Jiawei
    Fan, Dashan
    Zhu, Xiangrong
    [J]. SCIENCE CHINA-MATHEMATICS, 2018, 61 (09) : 1647 - 1664