Accessory parameters in confluent Heun equations and classical irregular conformal blocks

被引:0
|
作者
O. Lisovyy
A. Naidiuk
机构
[1] Université de Tours,Institut Denis
[2] CNRS,Poisson
[3] Parc de Grandmont,undefined
来源
关键词
Conformal field theory; Accessory parameters; Heun equation; 81R12; 81T40; 33E10;
D O I
暂无
中图分类号
学科分类号
摘要
Classical Virasoro conformal blocks are believed to be directly related to accessory parameters of Floquet type in the Heun equation and some of its confluent versions. We extend this relation to another class of accessory parameter functions that are defined by inverting all-order Bohr–Sommerfeld periods for confluent and biconfluent Heun equation. The relevant conformal blocks involve Nagoya irregular vertex operators of rank 1 and 2 and conjecturally correspond to partition functions of a 4D N=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {N}}=2$$\end{document}, Nf=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N_f=3$$\end{document} gauge theory at strong coupling and an Argyres–Douglas theory.
引用
收藏
相关论文
共 50 条
  • [21] Confluent conformal blocks and the Teukolsky master equation
    da Cunha, Bruno Carneiro
    Cavalcante, Joao Paulo
    PHYSICAL REVIEW D, 2020, 102 (10)
  • [22] Automorphisms of the solution spaces of special double-confluent Heun equations
    Buchstaber, V. M.
    Tertychnyi, S. I.
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2016, 50 (03) : 176 - 192
  • [23] Torus classical conformal blocks
    Menotti, Pietro
    MODERN PHYSICS LETTERS A, 2018, 33 (28)
  • [24] First-Order Ode Systems Generating Confluent Heun Equations
    Salatich A.A.
    Slavyanov S.Y.
    Stesik O.L.
    Journal of Mathematical Sciences, 2020, 251 (3) : 427 - 432
  • [25] Automorphisms of the solution spaces of special double-confluent Heun equations
    V. M. Buchstaber
    S. I. Tertychnyi
    Functional Analysis and Its Applications, 2016, 50 : 176 - 192
  • [26] Classical Virasoro irregular conformal block
    Rim, Chaiho
    Zhang, Hong
    JOURNAL OF HIGH ENERGY PHYSICS, 2015, (07):
  • [27] Classical Virasoro irregular conformal block
    Chaiho Rim
    Hong Zhang
    Journal of High Energy Physics, 2015
  • [28] Painleve V and confluent Heun equations associated with a perturbed Gaussian unitary ensemble
    Yu, Jianduo
    Chen, Siqi
    Li, Chuanzhong
    Zhu, Mengkun
    Chen, Yang
    JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (08)
  • [29] SERIES SOLUTIONS OF CONFLUENT HEUN EQUATIONS IN TERMS OF INCOMPLETE GAMMA-FUNCTIONS
    Ishkhanyan, A. M.
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2019, 9 (01): : 118 - 139
  • [30] Symmetries of the space of solutions to special double confluent Heun equations of integer order
    Tertychniy, Sergey I.
    JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (10)