After deriving the classical Ward identity for the variation of the action under a change of the modulus of the torus, we map the problem of the sphere with four sources to the torus. We extend the method previously developed for computing the classical conformal blocks for the sphere topology to the tours topology. We give the explicit results for the classical blocks up to the third-order in the nome included and compare them with the classical limit of the quantum conformal blocks. The extension to higher orders is straightforward.
机构:
Univ Calif Los Angeles, Dept Phys & Astron, Mani L Bhaumik Inst Theoret Phys, Los Angeles, CA 90095 USAUniv Calif Los Angeles, Dept Phys & Astron, Mani L Bhaumik Inst Theoret Phys, Los Angeles, CA 90095 USA
Kraus, Per
Maloney, Alexander
论文数: 0引用数: 0
h-index: 0
机构:
McGill Univ, Phys Dept, Montreal, PQ H3A 2T8, CanadaUniv Calif Los Angeles, Dept Phys & Astron, Mani L Bhaumik Inst Theoret Phys, Los Angeles, CA 90095 USA
Maloney, Alexander
Maxfield, Henry
论文数: 0引用数: 0
h-index: 0
机构:
McGill Univ, Phys Dept, Montreal, PQ H3A 2T8, CanadaUniv Calif Los Angeles, Dept Phys & Astron, Mani L Bhaumik Inst Theoret Phys, Los Angeles, CA 90095 USA
Maxfield, Henry
Ng, Gim Seng
论文数: 0引用数: 0
h-index: 0
机构:
McGill Univ, Phys Dept, Montreal, PQ H3A 2T8, CanadaUniv Calif Los Angeles, Dept Phys & Astron, Mani L Bhaumik Inst Theoret Phys, Los Angeles, CA 90095 USA
Ng, Gim Seng
Wu, Jie-qiang
论文数: 0引用数: 0
h-index: 0
机构:
Peking Univ, Phys Dept, Beijing 100871, Peoples R ChinaUniv Calif Los Angeles, Dept Phys & Astron, Mani L Bhaumik Inst Theoret Phys, Los Angeles, CA 90095 USA