SYMPLECTIC DIRAC OPERATORS FOR LIE ALGEBRAS AND GRADED HECKE ALGEBRAS

被引:0
|
作者
D. CIUBOTARU
M. DE MARTINO
P. MEYER
机构
[1] University of Oxford,Mathematical Institute
来源
Transformation Groups | 2023年 / 28卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this paper is to define a pair of symplectic Dirac operators (D+, D–) in an algebraic setting motivated by the analogy with the algebraic orthogonal Dirac operators in representation theory. We work in the settings of ℤ/2-graded quadratic Lie algebras 𝔤 = 𝔨 + 𝔭 and of graded affine Hecke algebras ℍ. In these contexts, we show analogues of the Parthasarathy’s formula for [D+, D–] and certain generalisations of the Casimir inequality.
引用
收藏
页码:1447 / 1475
页数:28
相关论文
共 50 条
  • [31] Graded representations of graded Lie algebras and generalized representations of Jordan algebras
    Kantor, I
    Shpiz, G
    [J]. Noncommutative Geometry and Representation Theory in Mathematical Physics, 2005, 391 : 167 - 174
  • [32] Construction of Symplectic Quadratic Lie Algebras from Poisson Algebras
    Benayadi, Said
    [J]. ALGEBRA, GEOMETRY AND MATHEMATICAL PHYSICS (AGMP), 2014, 85 : 111 - 122
  • [33] Graded identities for Lie algebras
    Koshlukov, Plamen
    Krasilnikov, Alexei
    Silva, Diogo D. P.
    [J]. GROUPS, RINGS AND GROUP RINGS, 2009, 499 : 181 - 188
  • [34] Graded Lie algebras and applications
    Iachello, F
    [J]. LATIN-AMERICAN SCHOOL OF PHYSICS - XXXV ELAF: SUPERSYMMETRIES IN PHYSICS AND ITS APPLICATIONS, 2005, 744 : 85 - 104
  • [35] REPRESENTATIONS OF GRADED LIE ALGEBRAS
    ROSS, LE
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 120 (01) : 17 - &
  • [36] On the structure of graded Lie algebras
    Calderon Martin, Antonio J.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (10)
  • [37] On differential graded Lie algebras
    Piontkovskii, DI
    [J]. RUSSIAN MATHEMATICAL SURVEYS, 2003, 58 (01) : 189 - 190
  • [38] A radical for graded Lie algebras
    Ceretto, D.
    Garcia, E.
    Gomez Lozano, M.
    [J]. ACTA MATHEMATICA HUNGARICA, 2012, 136 (1-2) : 16 - 29
  • [39] Symplectic structures on quadratic Lie algebras
    Bajo, Ignacio
    Benayadi, Said
    Medina, Alberto
    [J]. JOURNAL OF ALGEBRA, 2007, 316 (01) : 174 - 188
  • [40] A Basis for Representations of Symplectic Lie Algebras
    A. I. Molev
    [J]. Communications in Mathematical Physics, 1999, 201 : 591 - 618