SYMPLECTIC DIRAC OPERATORS FOR LIE ALGEBRAS AND GRADED HECKE ALGEBRAS

被引:0
|
作者
D. CIUBOTARU
M. DE MARTINO
P. MEYER
机构
[1] University of Oxford,Mathematical Institute
来源
Transformation Groups | 2023年 / 28卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this paper is to define a pair of symplectic Dirac operators (D+, D–) in an algebraic setting motivated by the analogy with the algebraic orthogonal Dirac operators in representation theory. We work in the settings of ℤ/2-graded quadratic Lie algebras 𝔤 = 𝔨 + 𝔭 and of graded affine Hecke algebras ℍ. In these contexts, we show analogues of the Parthasarathy’s formula for [D+, D–] and certain generalisations of the Casimir inequality.
引用
收藏
页码:1447 / 1475
页数:28
相关论文
共 50 条
  • [21] Dirac cohomology for symplectic reflection algebras
    Dan Ciubotaru
    Selecta Mathematica, 2016, 22 : 111 - 144
  • [22] Dirac cohomology for symplectic reflection algebras
    Ciubotaru, Dan
    SELECTA MATHEMATICA-NEW SERIES, 2016, 22 (01): : 111 - 144
  • [23] Hopf-Hecke algebras, infinitesimal Cherednik algebras, and Dirac cohomology
    Flake, Johannes
    Sahi, Siddhartha
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2021, 17 (04) : 1549 - 1597
  • [24] Lie Algebras Attached to Clifford Modules and Simple Graded Lie Algebras
    Furutani, Kenro
    Godoy Molina, Mauricio
    Markina, Irina
    Morimoto, Tohru
    Vasil'ev, Alexander
    JOURNAL OF LIE THEORY, 2018, 28 (03) : 843 - 864
  • [26] A view of symplectic Lie algebras from quadratic Poisson algebras
    Riano, Andres
    Reyes, Armando
    BOLETIN DE MATEMATICAS, 2019, 26 (01): : 1 - 30
  • [27] Symmetric Symplectic Commutative Associative Algebras and Related Lie Algebras
    Baklouti, Amir
    Benayadi, Said
    ALGEBRA COLLOQUIUM, 2011, 18 : 973 - 986
  • [28] A radical for graded Lie algebras
    Daniel Ceretto
    Esther García
    Miguel Gómez Lozano
    Acta Mathematica Hungarica, 2012, 136 : 16 - 29
  • [29] GRADED LIE ALGEBRAS OF AN ALGEBRA
    NIJENHUIS, A
    PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1967, 70 (05): : 475 - +
  • [30] On the homology of graded Lie algebras
    Tirao, P
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2001, 156 (2-3) : 357 - 366