Undecidability of First-Order Modal and Intuitionistic Logics with Two Variables and One Monadic Predicate Letter

被引:0
|
作者
Mikhail Rybakov
Dmitry Shkatov
机构
[1] Tver State University,Department of Mathematics
[2] University of the Witwatersrand,School of Computer Science and Applied Mathematics
[3] Johannesburg,undefined
来源
Studia Logica | 2019年 / 107卷
关键词
First-order intuitionistic logic; First-order modal logic; Undecidability; Two-variable fragment; Monadic fragment;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that the positive fragment of first-order intuitionistic logic in the language with two individual variables and a single monadic predicate letter, without functional symbols, constants, and equality, is undecidable. This holds true regardless of whether we consider semantics with expanding or constant domains. We then generalise this result to intervals [QBL,QKC]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[\mathbf{QBL}, \mathbf{QKC}]$$\end{document} and [QBL,QFL]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[\mathbf{QBL}, \mathbf{QFL}]$$\end{document}, where QKC is the logic of the weak law of the excluded middle and QBL and QFL are first-order counterparts of Visser’s basic and formal logics, respectively. We also show that, for most “natural” first-order modal logics, the two-variable fragment with a single monadic predicate letter, without functional symbols, constants, and equality, is undecidable, regardless of whether we consider semantics with expanding or constant domains. These include all sublogics of QKTB, QGL, and QGrz—among them, QK, QT, QKB, QD, QK4, and QS4.
引用
收藏
页码:695 / 717
页数:22
相关论文
共 50 条
  • [11] First-order spectra with one binary predicate
    Universite de Caen, Caen, France
    Theor Comput Sci, 1-2 (305-320):
  • [12] First-order spectra with one binary predicate
    Durand, A
    Ranaivoson, S
    THEORETICAL COMPUTER SCIENCE, 1996, 160 (1-2) : 305 - 320
  • [13] First-order spectra with one binary predicate
    Durand, A
    Ranaivoson, S
    COMPUTER SCIENCE LOGIC, 1995, 933 : 177 - 189
  • [14] Effective properties of some first order intuitionistic modal logics
    Pliuskeviciene, A
    AUTOMATED DEDUCTION IN CLASSICAL AND NON-CLASSICAL LOGICS, 2000, 1761 : 236 - 250
  • [15] Two first-order logics of permutations
    Albert, Michael
    Bouvel, Mathilde
    Feray, Valentin
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2020, 171
  • [16] First-order non-monotonic modal logics
    Kaminski, Michael
    Guy, Rey
    Fundamenta Informaticae, 2000, 42 (03) : 303 - 333
  • [17] Implementing and Evaluating Provers for First-order Modal Logics
    Benzmueller, Christoph
    Otten, Jens
    Raths, Thomas
    20TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE (ECAI 2012), 2012, 242 : 163 - +
  • [18] UNDECIDABILITY OF MODAL AND INTERMEDIATE 1ST-ORDER LOGICS WITH 2 INDIVIDUAL VARIABLES
    GABBAY, DM
    SHEHTMAN, VB
    JOURNAL OF SYMBOLIC LOGIC, 1993, 58 (03) : 800 - 823
  • [19] Alternative translation techniques for propositional and first-order modal logics
    Montanari, A
    Policriti, A
    Slanina, M
    JOURNAL OF AUTOMATED REASONING, 2002, 28 (04) : 397 - 415
  • [20] Alternative Translation Techniques for Propositional and First-Order Modal Logics
    Angelo Montanari
    Alberto Policriti
    Matteo Slanina
    Journal of Automated Reasoning, 2002, 28 : 397 - 415