First-order spectra with one binary predicate

被引:0
|
作者
Durand, A
Ranaivoson, S
机构
来源
COMPUTER SCIENCE LOGIC | 1995年 / 933卷
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The spectrum, Sp(phi), of a sentence phi is the set of cardinalities of finite structures which satisfy phi. We prove that any set of integers which is in Func(1)(infinity) i.e. in the class of spectra of first-order sentences of type containing only unary function symbols is also in BIN1 i.e, in the class of spectra of first-order sentences of type involving only a single binary relation. We give similar results for generalized spectra and some corollaries: in particular, from the fact that the large complexity class (c) boolean OR NTIME(RAM)(CR) is included in Func(1)(infinity) for unary languages (n denotes the input integer), we deduce that the set of primes and many ''natural'' sets belong to BIN1
引用
收藏
页码:177 / 189
页数:13
相关论文
共 50 条
  • [1] First-order spectra with one binary predicate
    Universite de Caen, Caen, France
    [J]. Theor Comput Sci, 1-2 (305-320):
  • [2] First-order spectra with one binary predicate
    Durand, A
    Ranaivoson, S
    [J]. THEORETICAL COMPUTER SCIENCE, 1996, 160 (1-2) : 305 - 320
  • [3] Binary decision diagrams for first-order predicate logic
    Groote, JF
    Tveretina, O
    [J]. JOURNAL OF LOGIC AND ALGEBRAIC PROGRAMMING, 2003, 57 (1-2): : 1 - 22
  • [4] A NOTE ON FIRST-ORDER SPECTRA WITH BINARY RELATIONS
    Kopczynski, Eryk
    Tan, Tony
    [J]. LOGICAL METHODS IN COMPUTER SCIENCE, 2018, 14 (02)
  • [5] STUDIES ON ONE-PLACE INTUITIONISTIC PREDICATE CALCULUS OF FIRST-ORDER
    OKEE, J
    [J]. ZEITSCHRIFT FUR MATHEMATISCHE LOGIK UND GRUNDLAGEN DER MATHEMATIK, 1972, 18 (01): : 37 - &
  • [6] On A New Semantics for First-Order Predicate Logic
    Andreka, Hajnal
    van Benthem, Johan
    Nemeti, Istvan
    [J]. JOURNAL OF PHILOSOPHICAL LOGIC, 2017, 46 (03) : 259 - 267
  • [7] PROPERTIES OF PROGRAMS AND FIRST-ORDER PREDICATE CALCULUS
    MANNA, Z
    [J]. JOURNAL OF THE ACM, 1969, 16 (02) : 244 - &
  • [8] STRUCTURAL COMPLETENESS OF FIRST-ORDER PREDICATE CALCULUS
    POGORZEL.WA
    PRUCNAL, T
    [J]. BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1974, 22 (03): : 215 - 217
  • [9] The suppression task and first-order predicate calculus
    Lopez-Astorga, Miguel
    [J]. THEORIA-A SWEDISH JOURNAL OF PHILOSOPHY, 2023, 89 (06): : 800 - 810
  • [10] On A New Semantics for First-Order Predicate Logic
    Hajnal Andréka
    Johan van Benthem
    István Németi
    [J]. Journal of Philosophical Logic, 2017, 46 : 259 - 267