On the Fractal Dimension of Rough Surfaces

被引:0
|
作者
B. N. J. Persson
机构
[1] PGI-1,
[2] FZ-Jülich,undefined
来源
Tribology Letters | 2014年 / 54卷
关键词
Self-affine fractal; Surface fragility; Fractal dimension; Power spectra;
D O I
暂无
中图分类号
学科分类号
摘要
Most natural surfaces and surfaces of engineering interest, e.g., polished or sandblasted surfaces, are self-affine fractal over a wide range of length scales, with the fractal dimension Df=2.15±0.15\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_{\mathrm{f}} = 2.15\pm 0.15$$\end{document}. We give several examples illustrating this and a simple argument, based on surface fragility, for why the fractal dimension usually is <2.3. A kinetic model of sandblasting is presented, which gives surface topographies and surface roughness power spectra in good agreement with experiments.
引用
收藏
页码:99 / 106
页数:7
相关论文
共 50 条
  • [1] Fractal dimension of rough surfaces
    Kovalchuk, A
    [J]. FIFTH INTERNATIONAL CONFERENCE ON CORRELATION OPTICS, 2001, 4607 : 291 - 296
  • [2] On the Fractal Dimension of Rough Surfaces
    Persson, B. N. J.
    [J]. TRIBOLOGY LETTERS, 2014, 54 (01) : 99 - 106
  • [3] A Model for Fractal Dimension of Rough Surfaces
    Li Jian-Hua
    Yu Bo-Ming
    Zou Ming-Qing
    [J]. CHINESE PHYSICS LETTERS, 2009, 26 (11)
  • [4] Stickiness of randomly rough surfaces with high fractal dimension: is there a fractal limit?
    Violano, G.
    Papangelo, A.
    Ciavarella, M.
    [J]. TRIBOLOGY INTERNATIONAL, 2021, 159
  • [5] The Influence of the Fractal Dimension of Rough Surfaces on the Adhesion of Elastic Materials
    Carbone, G.
    Pierro, E.
    [J]. JOURNAL OF ADHESION SCIENCE AND TECHNOLOGY, 2012, 26 (22) : 2555 - 2570
  • [6] FRACTAL DIMENSION OF ROUGH SURFACES IN THE SOLID-ON-SOLID MODEL
    WONG, PZ
    BRAY, AJ
    [J]. PHYSICAL REVIEW LETTERS, 1987, 59 (09) : 1057 - 1057
  • [7] Determination of the fractal dimension of equipotential surfaces in a region confined by rough conductors
    Dias, HD
    de Castilho, CMC
    Miranda, JGV
    Andrade, RFS
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 342 (1-2) : 388 - 394
  • [8] The effect of vertical scaling on the estimation of the fractal dimension of randomly rough surfaces
    Schouwenaars, Rafael
    Jacobo, Victor H.
    Ortiz, Armando
    [J]. APPLIED SURFACE SCIENCE, 2017, 425 : 838 - 846
  • [9] An analysis of generated fractal and measured rough surfaces in regards to their multi-scale structure and fractal dimension
    Zhang, Xiaohan
    Xu, Yang
    Jackson, Robert L.
    [J]. TRIBOLOGY INTERNATIONAL, 2017, 105 : 94 - 101
  • [10] Flexoelectricity at fractal rough surfaces
    Zhai, Chongpu
    Zhang, Shuwen
    Ji, Hui
    Wei, Deheng
    Song, Hengxu
    Liu, Kaiyuan
    Xu, Minglong
    [J]. EXTREME MECHANICS LETTERS, 2023, 61