On the Fractal Dimension of Rough Surfaces

被引:0
|
作者
B. N. J. Persson
机构
[1] PGI-1,
[2] FZ-Jülich,undefined
来源
Tribology Letters | 2014年 / 54卷
关键词
Self-affine fractal; Surface fragility; Fractal dimension; Power spectra;
D O I
暂无
中图分类号
学科分类号
摘要
Most natural surfaces and surfaces of engineering interest, e.g., polished or sandblasted surfaces, are self-affine fractal over a wide range of length scales, with the fractal dimension Df=2.15±0.15\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_{\mathrm{f}} = 2.15\pm 0.15$$\end{document}. We give several examples illustrating this and a simple argument, based on surface fragility, for why the fractal dimension usually is <2.3. A kinetic model of sandblasting is presented, which gives surface topographies and surface roughness power spectra in good agreement with experiments.
引用
收藏
页码:99 / 106
页数:7
相关论文
共 50 条