Determination of the fractal dimension of equipotential surfaces in a region confined by rough conductors

被引:3
|
作者
Dias, HD [1 ]
de Castilho, CMC [1 ]
Miranda, JGV [1 ]
Andrade, RFS [1 ]
机构
[1] Univ Fed Bahia, Inst Fis, BR-40210340 Salvador, BA, Brazil
关键词
fractal dimension; surfaces; Laplace's equation;
D O I
10.1016/j.physa.2004.04.099
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider a region bounded by two conductors held to a constant voltage bias, one of them with an irregular rough shape and the other being a flat one. The irregular profile can be either a curve with a formation rule or the result of a deposition process. The rough shape of the profile influences the equipotential lines, which we have characterized by numerically evaluating their roughness exponent alpha and fractal dimension D-f. For a fixed finite size system, the less corrugated lines, far away from the rough profile, have higher alpha. For a line corresponding to a fixed value of the potential, the roughness exponent decreases with the size of the profile, suggesting that a single constant value characterizes all lines for an infinite system. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:388 / 394
页数:7
相关论文
共 50 条
  • [1] On the Fractal Dimension of Rough Surfaces
    B. N. J. Persson
    [J]. Tribology Letters, 2014, 54 : 99 - 106
  • [2] Fractal dimension of rough surfaces
    Kovalchuk, A
    [J]. FIFTH INTERNATIONAL CONFERENCE ON CORRELATION OPTICS, 2001, 4607 : 291 - 296
  • [3] On the Fractal Dimension of Rough Surfaces
    Persson, B. N. J.
    [J]. TRIBOLOGY LETTERS, 2014, 54 (01) : 99 - 106
  • [4] A Model for Fractal Dimension of Rough Surfaces
    Li Jian-Hua
    Yu Bo-Ming
    Zou Ming-Qing
    [J]. CHINESE PHYSICS LETTERS, 2009, 26 (11)
  • [5] Height distribution of equipotential lines in a region confined by a rough conducting boundary
    de Castro, C. P.
    de Assis, T. A.
    de Castilho, C. M. C.
    Andrade, R. F. S.
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2014, 26 (44)
  • [6] Stickiness of randomly rough surfaces with high fractal dimension: is there a fractal limit?
    Violano, G.
    Papangelo, A.
    Ciavarella, M.
    [J]. TRIBOLOGY INTERNATIONAL, 2021, 159
  • [7] The Influence of the Fractal Dimension of Rough Surfaces on the Adhesion of Elastic Materials
    Carbone, G.
    Pierro, E.
    [J]. JOURNAL OF ADHESION SCIENCE AND TECHNOLOGY, 2012, 26 (22) : 2555 - 2570
  • [8] A Multiphysics Theory for the Static Contact of Deformable Conductors with Fractal Rough Surfaces
    Michopoulos, J. G.
    Young, M.
    Iliopoulos, A.
    [J]. 2014 17TH INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC LAUNCH TECHNOLOGY (EML), 2014,
  • [9] A Multiphysics Theory for the Static Contact of Deformable Conductors With Fractal Rough Surfaces
    Michopoulos, John G.
    Young, Marcus
    Iliopoulos, Athanasios
    [J]. IEEE TRANSACTIONS ON PLASMA SCIENCE, 2015, 43 (05) : 1597 - 1610
  • [10] FRACTAL DIMENSION OF ROUGH SURFACES IN THE SOLID-ON-SOLID MODEL
    WONG, PZ
    BRAY, AJ
    [J]. PHYSICAL REVIEW LETTERS, 1987, 59 (09) : 1057 - 1057