Determination of the fractal dimension of equipotential surfaces in a region confined by rough conductors

被引:3
|
作者
Dias, HD [1 ]
de Castilho, CMC [1 ]
Miranda, JGV [1 ]
Andrade, RFS [1 ]
机构
[1] Univ Fed Bahia, Inst Fis, BR-40210340 Salvador, BA, Brazil
关键词
fractal dimension; surfaces; Laplace's equation;
D O I
10.1016/j.physa.2004.04.099
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider a region bounded by two conductors held to a constant voltage bias, one of them with an irregular rough shape and the other being a flat one. The irregular profile can be either a curve with a formation rule or the result of a deposition process. The rough shape of the profile influences the equipotential lines, which we have characterized by numerically evaluating their roughness exponent alpha and fractal dimension D-f. For a fixed finite size system, the less corrugated lines, far away from the rough profile, have higher alpha. For a line corresponding to a fixed value of the potential, the roughness exponent decreases with the size of the profile, suggesting that a single constant value characterizes all lines for an infinite system. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:388 / 394
页数:7
相关论文
共 50 条
  • [41] NUMERICAL DETERMINATION OF SEALING PERFORMANCE OF A ROUGH CONTACT: REAL VERSUS SYNTHETIC FRACTAL SURFACES
    Vallet, Christophe
    Lasseux, Didier
    Sainsot, Philippe
    Zahouani, Hassan
    [J]. PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, VOL 2: COMPUTER APPLICATIONS/TECHNOLOGY AND BOLTED JOINTS, 2009, : 91 - 100
  • [42] Normal contact stiffness of fractal rough surfaces
    Buczkowski, R.
    Kleiber, M.
    Starzynski, G.
    [J]. ARCHIVES OF MECHANICS, 2014, 66 (06): : 411 - 428
  • [43] Relation between fractal dimension and roughness index for fractal surfaces
    Lung, CW
    Jiang, J
    Tian, EK
    Zhang, CH
    [J]. PHYSICAL REVIEW E, 1999, 60 (05): : 5121 - 5125
  • [44] Interfacial contact stiffness of fractal rough surfaces
    Zhang, Dayi
    Xia, Ying
    Scarpa, Fabrizio
    Hong, Jie
    Ma, Yanhong
    [J]. SCIENTIFIC REPORTS, 2017, 7
  • [45] Lacunarity control on fractal and random rough surfaces
    Zabaleta, GR
    Rodríguez, ET
    Lehman, M
    [J]. 4TH IBEROAMERICAN MEETING ON OPTICS AND 7TH LATIN AMERICAN MEETING ON OPTICS, LASERS, AND THEIR APPLICATIONS, 2001, 4419 : 470 - 473
  • [46] Dynamics of rough surfaces growing on fractal substrates
    Matsuyama, T
    Honda, K
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1997, 66 (09) : 2533 - 2536
  • [47] Interfacial contact stiffness of fractal rough surfaces
    Dayi Zhang
    Ying Xia
    Fabrizio Scarpa
    Jie Hong
    Yanhong Ma
    [J]. Scientific Reports, 7
  • [48] An Analysis of Generated Fractal and Measured Rough Surfaces
    Zhang, Xiaohan
    Xu, Yang
    Jackson, Robert L.
    [J]. PROCEEDINGS OF THE SIXTY-SECOND IEEE HOLM CONFERENCE ON ELECTRICAL CONTACTS, 2016, : 192 - 197
  • [49] ON CORRECTNESS OF THE STATISTICAL DETERMINATION OF THE FRACTAL DIMENSION USING THE SLIT ISLANDS METHOD AND FRACTAL PROPERTIES OF THE BASIC FRACTURE SURFACES
    KRUPIN, YA
    KISELEV, IK
    [J]. SCRIPTA METALLURGICA ET MATERIALIA, 1991, 25 (03): : 655 - 658
  • [50] Fractal structure and fractal dimension determination at nanometer scale
    张跃
    李启楷
    褚武扬
    王琛
    白春礼
    [J]. Science China Mathematics, 1999, (09) : 965 - 972