Three-dimensional nanofiber scaffolds with arrayed holes for engineering skin tissue constructs

被引:0
|
作者
Lina Fu
Jingwei Xie
Mark A. Carlson
Debra A. Reilly
机构
[1] University of Nebraska Medical Center,Department of Surgery
[2] University of Nebraska Medical Center,Transplant and Mary & Dick Holland Regenerative Medicine Program
来源
MRS Communications | 2017年 / 7卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Three-dimensional (3D) scaffolds composed of poly(ε-caprolactone) and gelatin nanofibers were fabricated by a combination of electrospinning and modified gas-foaming. Arrayed holes throughout the scaffold were created using a punch under cryo conditions. The crosslinking with glutaraldehyde vapor improved the water stability of the scaffolds. Cell spheroids of green fluorescent protein-labeled human dermal fibroblasts were prepared and seeded into the holes. It was found that the fibroblasts adhered well on the surface of nanofibers and migrated into the scaffolds due to the porous structures. The 3D nanofiber scaffolds may hold great potential for engineering tissue constructs for various applications.
引用
收藏
页码:361 / 366
页数:5
相关论文
共 50 条
  • [21] Three-dimensional porcine kidney scaffolds for renal tissue engineering
    Bonandrini, B.
    Figliuzzi, M.
    Rosati, M.
    Silvani, S.
    Morigi, M.
    Benigni, A.
    Remuzzi, G.
    Remuzzi, A.
    JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2014, 8 : 110 - 110
  • [22] Techniques for fabrication and construction of three-dimensional scaffolds for tissue engineering
    Lu, Tingli
    Li, Yuhui
    Chen, Tao
    INTERNATIONAL JOURNAL OF NANOMEDICINE, 2013, 8 : 337 - 350
  • [23] Three-dimensional fibrous scaffolds with microstructures and nanotextures for tissue engineering
    Ng, Robin
    Zang, Ru
    Yang, Kevin K.
    Liu, Ning
    Yang, Shang-Tian
    RSC ADVANCES, 2012, 2 (27) : 10110 - 10124
  • [24] Bioinspired Three-Dimensional Magnetoactive Scaffolds for Bone Tissue Engineering
    Fernandes, Margarida M.
    Correia, Daniela M.
    Ribeiro, Clarisse
    Castro, Nelson
    Correia, Vitor
    Lanceros-Mendez, Senentxu
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (48) : 45265 - 45275
  • [25] Heparinized hydroxyapatite/collagen three-dimensional scaffolds for tissue engineering
    Teixeira, S.
    Yang, L.
    Dijkstra, P. J.
    Ferraz, M. P.
    Monteiro, F. J.
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2010, 21 (08) : 2385 - 2392
  • [26] Heparinized hydroxyapatite/collagen three-dimensional scaffolds for tissue engineering
    S. Teixeira
    L. Yang
    P. J. Dijkstra
    M. P. Ferraz
    F. J. Monteiro
    Journal of Materials Science: Materials in Medicine, 2010, 21 : 2385 - 2392
  • [27] Three-dimensional reconstituted extracellular matrix scaffolds for tissue engineering
    Narayanan, Karthikeyan
    Leck, Kwong-Joo
    Gao, Shujun
    Wan, Andrew C. A.
    BIOMATERIALS, 2009, 30 (26) : 4309 - 4317
  • [28] Three-dimensional electrospun nanofibrous scaffolds for bone tissue engineering
    Lin, Weimin
    Chen, Miao
    Qu, Tao
    Li, Jidong
    Man, Yi
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2020, 108 (04) : 1311 - 1321
  • [29] Porous three-dimensional carbon nanotube scaffolds for tissue engineering
    Lalwani, Gaurav
    Gopalan, Anu
    D'Agati, Michael
    Sankaran, Jeyantt Srinivas
    Judex, Stefan
    Qin, Yi-Xian
    Sitharaman, Balaji
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2015, 103 (10) : 3212 - 3225
  • [30] Technological advances in three-dimensional skin tissue engineering
    Cai, Runxuan
    Gimenez-Camino, Naroa
    Xiao, Ming
    Bi, Shuguang
    DiVito, Kyle A. A.
    REVIEWS ON ADVANCED MATERIALS SCIENCE, 2023, 62 (01)