The inverse problem for a nonlinear Schrödinger equation

被引:0
|
作者
Yagubov G.Ya.
Musaeva M.A.
机构
关键词
Refractive Index; Inverse Problem; Variational Method; Nonlinear Medium;
D O I
10.1007/BF02366390
中图分类号
学科分类号
摘要
Using variational methods, the solution of the inverse problem of finding the refractive index of a nonlinear medium in a multidimensional Schrödinger equation is studied. The correctness of the statement of the problem under consideration is investigated, and a necessary condition that must be satisfied by the solution of this problem is found. ©1999 Kluwer Academic/Plenum Publishers.
引用
收藏
页码:3981 / 3984
页数:3
相关论文
共 50 条
  • [31] Increasing stability of a linearized inverse boundary value problem for a nonlinear Schrödinger equation on transversally anisotropic manifolds
    Lu, Shuai
    Zhai, Jian
    INVERSE PROBLEMS, 2024, 40 (04)
  • [32] On the Inverse Resonance Problem for Schrödinger Operators
    Marco Marlettta
    Roman Shterenberg
    Rudi Weikard
    Communications in Mathematical Physics, 2010, 295 : 465 - 484
  • [33] Inverse scattering transform for the derivative nonlinear Schrödinger equation with nonvanishing boundary conditions
    Chen, Xiang-Jun
    Lam, Wa Kun
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2004, 69 (6 2): : 066604 - 1
  • [34] The Cauchy problem for the energy-critical inhomogeneous nonlinear Schrödinger equation
    Yoonjung Lee
    Ihyeok Seo
    Archiv der Mathematik, 2021, 117 : 441 - 453
  • [35] A NONLINEAR SCHR?DINGER EQUATION WITH COULOMB POTENTIAL
    苗长兴
    张军勇
    郑继强
    Acta Mathematica Scientia, 2022, 42 (06) : 2230 - 2256
  • [36] A nonlinear Schrödinger equation with Coulomb potential
    Changxing Miao
    Junyong Zhang
    Jiqiang Zheng
    Acta Mathematica Scientia, 2022, 42 : 2230 - 2256
  • [37] Stationary solutions for the nonlinear Schrödinger equation
    Ferrario, Benedetta
    Zanella, Margherita
    STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2025,
  • [38] KAM Theorem for the Nonlinear Schrödinger Equation
    Benoît Grébert
    Thomas Kappeler
    Journal of Nonlinear Mathematical Physics, 2001, 8 (Suppl 1) : 133 - 138
  • [39] Semiclassical Solutions of the Nonlinear Schrödinger Equation
    A. V. Shapovalov
    A. Yu. Trifonov
    Journal of Nonlinear Mathematical Physics, 1999, 6 : 127 - 138
  • [40] Stroboscopic Averaging for the Nonlinear Schrödinger Equation
    F. Castella
    Ph. Chartier
    F. Méhats
    A. Murua
    Foundations of Computational Mathematics, 2015, 15 : 519 - 559