Increasing stability of a linearized inverse boundary value problem for a nonlinear Schrödinger equation on transversally anisotropic manifolds

被引:1
|
作者
Lu, Shuai [1 ,2 ]
Zhai, Jian [1 ]
机构
[1] Fudan Univ, Sch Math Sci, SKLCAM, Shanghai 200433, Peoples R China
[2] Fudan Univ, LMNS, Shanghai 200433, Peoples R China
关键词
increasing stability; inverse boundary value problem; nonlinear Schrodinger equations; ELLIPTIC-EQUATIONS; GLOBAL UNIQUENESS; CALDERON PROBLEM; ATTENUATION;
D O I
10.1088/1361-6420/ad2533
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the problem of recovering a nonlinear potential function in a nonlinear Schrodinger equation on transversally anisotropic manifolds from the linearized Dirichlet-to-Neumann map at a large wavenumber. By calibrating the complex geometric optics solutions according to the wavenumber, we prove the increasing stability of recovering the coefficient of a cubic term as the wavenumber becomes large.
引用
收藏
页数:22
相关论文
共 50 条