Refined a posteriori error estimation for classical and pressure-robust Stokes finite element methods

被引:0
|
作者
Philip Lukas Lederer
Christian Merdon
Joachim Schöberl
机构
[1] TU Wien,Institute for Analysis and Scientific Computing
[2] Weierstrass Institute for Applied Analysis and Stochastics,undefined
来源
Numerische Mathematik | 2019年 / 142卷
关键词
65N15; 65N30; 76D07; 76M10;
D O I
暂无
中图分类号
学科分类号
摘要
Recent works showed that pressure-robust modifications of mixed finite element methods for the Stokes equations outperform their standard versions in many cases. This is achieved by divergence-free reconstruction operators and results in pressure-independent velocity error estimates which are robust with respect to small viscosities. In this paper we develop a posteriori error control which reflects this robustness. The main difficulty lies in the volume contribution of the standard residual-based approach that includes the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-norm of the right-hand side. However, the velocity is only steered by the divergence-free part of this source term. An efficient error estimator must approximate this divergence-free part in a proper manner, otherwise it can be dominated by the pressure error. To overcome this difficulty a novel approach is suggested that uses arguments from the stream function and vorticity formulation of the Navier–Stokes equations. The novel error estimators only take the curl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {curl}$$\end{document} of the right-hand side into account and so lead to provably reliable, efficient and pressure-independent upper bounds in case of a pressure-robust method in particular in pressure-dominant situations. This is also confirmed by some numerical examples with the novel pressure-robust modifications of the Taylor–Hood and mini finite element methods.
引用
下载
收藏
页码:713 / 748
页数:35
相关论文
共 50 条
  • [41] Posteriori finite element error estimation for diffusion problems
    Adjerid, Slimane
    Belguendouz, Belkacem
    Flaherty, Joseph E.
    SIAM Journal on Scientific Computing, 21 (02): : 728 - 746
  • [42] A posteriori finite element error estimation for diffusion problems
    Adjerid, S
    Belguendouz, B
    Flaherty, JE
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 21 (02): : 728 - 746
  • [43] PRESSURE ROBUST WEAK GALERKIN FINITE ELEMENT METHODS FOR STOKES PROBLEMS
    Mu, Lin
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (03): : B608 - B629
  • [44] Refined mixed finite element methods for the Stokes problem
    ElBouzid, H
    Nicaise, S
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1996, 322 (11): : 1075 - 1080
  • [45] A posteriori error estimators for nonconforming finite element methods
    Dari, E
    Duran, R
    Padra, C
    Vampa, V
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1996, 30 (04): : 385 - 400
  • [46] A posteriori error estimates of finite element methods by preconditioning
    Li, Yuwen
    Zikatanov, Ludmil
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 91 : 192 - 201
  • [47] A posteriori error estimates for nonconforming finite element methods
    Carstensen, C
    Bartels, S
    Jansche, S
    NUMERISCHE MATHEMATIK, 2002, 92 (02) : 233 - 256
  • [48] A posteriori error estimates for nonconforming finite element methods
    Carsten Carstensen
    Sören Bartels
    Stefan Jansche
    Numerische Mathematik, 2002, 92 : 233 - 256
  • [49] Superconvergence and a posteriori error estimates in finite element methods
    Chen, Chuanmiao
    Shi, Zhong-Ci
    Xie, Ziqing
    Zhang, Zhimin
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2006, 3 (03)
  • [50] Uniform convergence and a posteriori error estimation for assumed stress hybrid finite element methods
    Yu, Guozhu
    Xie, Xiaoping
    Carstensen, Carsten
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2011, 200 (29-32) : 2421 - 2433