Parametrization of supersingular perturbations in the method of rigged Hilbert spaces

被引:0
|
作者
R. V. Bozhok
V. D. Koshmanenko
机构
[1] Institute of Mathematics,
关键词
Hilbert Space; Quadratic Form; Singular Perturbation; Symmetric Operator; Integral Kernel;
D O I
暂无
中图分类号
学科分类号
摘要
A classification of bounded below supersingular perturbations à of a self-adjoint operator A ⩾ 1 is suggested. In the A-scale of Hilbert spaces \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{H}_{ - k} \sqsupset \mathcal{H} \sqsupset \mathcal{H}_k $$ \end{document} = Dom Ak/2, k > 0, a parametrization of operators à in terms of bounded mappings S: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{H}_k \to \mathcal{H}_{ - k} $$ \end{document} such that ker S is dense in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{H}_{k/2} $$ \end{document} is obtained.
引用
收藏
页码:409 / 416
页数:7
相关论文
共 50 条
  • [41] A spectral theory of linear operators on rigged Hilbert spaces under analyticity conditions
    Chiba, Hayato
    ADVANCES IN MATHEMATICS, 2015, 273 : 324 - 379
  • [42] Application of the Rigged Hilbert Spaces into the Generalized Signals and Systems Theory: Practical Example
    Heredia-Juesas, J.
    Gago-Ribas, E.
    Vidal-Garcia, P.
    2016 PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM (PIERS), 2016, : 4728 - 4733
  • [43] Parabolic variational inequalities and their Lipschitz perturbations in Hilbert spaces
    Jeong, JM
    Park, CY
    Park, JY
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2000, 31 (06): : 603 - 620
  • [44] On perturbations of Hilbert spaces and probability algebras with a generic automorphism
    Ben Yaacov, Itai
    Berenstein, Alexander
    JOURNAL OF LOGIC AND ANALYSIS, 2009, 1
  • [45] INVERSE PROBLEM FOR SELF-ADJOINT OPERATORS ON A TENSOR PRODUCT OF RIGGED HILBERT SPACES
    BUTLER, JB
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (03): : A349 - A349
  • [46] Spectrum perturbations of operators on tensor products of Hilbert spaces
    Gil, MI
    JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 2004, 43 (04): : 719 - 735
  • [47] The Rigged Hilbert Space of the free Hamiltonian
    de la Madrid, R
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2003, 42 (10) : 2441 - 2460
  • [48] The Rigged Hilbert Space of the Free Hamiltonian
    Rafael de la Madrid
    International Journal of Theoretical Physics, 2003, 42 : 2441 - 2460
  • [49] Rigged Hilbert space, duality, and cosmology
    Castagnino, MA
    FIRST LATIN AMERICAN SYMPOSIUM ON HIGH ENERGY PHYSICS AND VII MEXICAN SCHOOL OF PARTICLES AND FIELDS, 1997, (400): : 469 - 475
  • [50] Rigged Hilbert spaces and time asymmetry: The case of the upside-down simple harmonic oscillator
    Castagnino, Morio
    Diener, Roberto
    Lara, Luis
    Puccini, Gabriel
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1997, 36 (11) : 2349 - 2369