Parametrization of supersingular perturbations in the method of rigged Hilbert spaces

被引:0
|
作者
R. V. Bozhok
V. D. Koshmanenko
机构
[1] Institute of Mathematics,
关键词
Hilbert Space; Quadratic Form; Singular Perturbation; Symmetric Operator; Integral Kernel;
D O I
暂无
中图分类号
学科分类号
摘要
A classification of bounded below supersingular perturbations à of a self-adjoint operator A ⩾ 1 is suggested. In the A-scale of Hilbert spaces \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{H}_{ - k} \sqsupset \mathcal{H} \sqsupset \mathcal{H}_k $$ \end{document} = Dom Ak/2, k > 0, a parametrization of operators à in terms of bounded mappings S: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{H}_k \to \mathcal{H}_{ - k} $$ \end{document} such that ker S is dense in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{H}_{k/2} $$ \end{document} is obtained.
引用
收藏
页码:409 / 416
页数:7
相关论文
共 50 条
  • [21] Operators in rigged Hilbert spaces: Some spectral properties
    Bellomonte, Giorgia
    Di Bella, Salvatore
    Trapani, Camillo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 411 (02) : 931 - 946
  • [22] DIRICHLET FORMS AND DIFFUSION PROCESSES ON RIGGED HILBERT SPACES
    ALBEVERIO, S
    HOEGHKROHN, R
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1977, 40 (01): : 1 - 57
  • [23] Riesz-Like Bases in Rigged Hilbert Spaces
    Bellomonte, Giorgia
    Trapani, Camillo
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2016, 35 (03): : 243 - 265
  • [24] Eigenfunction expansions and scattering theory in rigged Hilbert spaces
    Gomez-Cubillo, F.
    5TH INTERNATIONAL SYMPOSIUM ON QUANTUM THEORY AND SYMMETRIES QTS5, 2008, 128
  • [25] Resonances and time reversal operator in rigged Hilbert spaces
    Gadella, M
    de la Madrid, R
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1999, 38 (01) : 93 - 113
  • [26] Application of the Rigged Hilbert Spaces into the Generalized Signals & Systems Theory
    Heredia-Juesas, J.
    Gago-Ribas, E.
    Vidal-Garcia, P.
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON ELECTROMAGNETICS IN ADVANCED APPLICATIONS (ICEAA), 2015, : 1365 - 1368
  • [27] Applications of rigged Hilbert spaces in quantum mechanics and signal processing
    Celeghini, E.
    Gadella, M.
    del Olmo, M. A.
    JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (07)
  • [28] Levy-Laplace operators in functional rigged Hilbert spaces
    Accardi, L
    Smolyanov, OG
    MATHEMATICAL NOTES, 2002, 72 (1-2) : 129 - 134
  • [29] HUNT PROCESSES AND ANALYTIC POTENTIAL THEORY ON RIGGED HILBERT SPACES
    ALBEVERIO, S
    HOEGHKROHN, R
    ANNALES DE L INSTITUT HENRI POINCARE SECTION B-CALCUL DES PROBABILITES ET STATISTIQUE, 1977, 13 (03): : 269 - 291
  • [30] RESONANCES, SCATTERING-THEORY, AND RIGGED HILBERT-SPACES
    PARRAVICINI, G
    GORINI, V
    SUDARSHAN, ECG
    JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (08) : 2208 - 2226