Parametrization of supersingular perturbations in the method of rigged Hilbert spaces

被引:0
|
作者
R. V. Bozhok
V. D. Koshmanenko
机构
[1] Institute of Mathematics,
关键词
Hilbert Space; Quadratic Form; Singular Perturbation; Symmetric Operator; Integral Kernel;
D O I
暂无
中图分类号
学科分类号
摘要
A classification of bounded below supersingular perturbations à of a self-adjoint operator A ⩾ 1 is suggested. In the A-scale of Hilbert spaces \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{H}_{ - k} \sqsupset \mathcal{H} \sqsupset \mathcal{H}_k $$ \end{document} = Dom Ak/2, k > 0, a parametrization of operators à in terms of bounded mappings S: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{H}_k \to \mathcal{H}_{ - k} $$ \end{document} such that ker S is dense in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{H}_{k/2} $$ \end{document} is obtained.
引用
收藏
页码:409 / 416
页数:7
相关论文
共 50 条
  • [1] Parametrization of supersingular perturbations in the method of rigged Hilbert spaces
    Bozhok, R. V.
    Koshmanenko, V. D.
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2007, 14 (04) : 409 - 416
  • [2] Construction of singular perturbations by the method of rigged Hilbert spaces
    Koshmanenko, V
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (22): : 4999 - 5009
  • [3] Singular Perturbations and Operators in Rigged Hilbert Spaces
    Salvatore di Bella
    Camillo Trapani
    Mediterranean Journal of Mathematics, 2016, 13 : 2011 - 2024
  • [4] Singular Perturbations and Operators in Rigged Hilbert Spaces
    di Bella, Salvatore
    Trapani, Camillo
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (04) : 2011 - 2024
  • [5] Rigged Hilbert spaces and contractive families of Hilbert spaces
    Bellomonte, Giorgia
    Trapani, Camillo
    MONATSHEFTE FUR MATHEMATIK, 2011, 164 (03): : 271 - 285
  • [6] Rigged Hilbert spaces and contractive families of Hilbert spaces
    Giorgia Bellomonte
    Camillo Trapani
    Monatshefte für Mathematik, 2011, 164 : 271 - 285
  • [7] Singular perturbations of self-adjoint operators associated with rigged Hilbert spaces
    Bozhok R.V.
    Koshmanenko V.D.
    Ukrainian Mathematical Journal, 2005, 57 (5) : 738 - 750
  • [8] Irreversibility, resonances and rigged Hilbert spaces
    Antoniou, IE
    Gadella, M
    IRREVERSIBLE QUANTUM DYNAMICS, 2003, 622 : 245 - 302
  • [9] Spherical harmonics and rigged Hilbert spaces
    Celeghini, E.
    Gadella, M.
    del Olmo, M. A.
    JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (05)
  • [10] A constructive presentation of rigged Hilbert spaces
    Celeghini, Enrico
    7TH INTERNATIONAL WORKSHOP DICE2014 SPACETIME - MATTER - QUANTUM MECHANICS, 2015, 626