Multi solitary waves to stochastic nonlinear Schrödinger equations

被引:0
|
作者
Michael Röckner
Yiming Su
Deng Zhang
机构
[1] Universität Bielefeld,Fakultät für Mathematik
[2] Zhejiang University of Technology,Department of mathematics
[3] Shanghai Jiao Tong University,School of mathematical sciences
来源
关键词
Multi-solitons; Rough path; Stochastic nonlinear Schrödinger equations; Primary 60H15; 35C08; 35Q55;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we present a pathwise construction of multi-soliton solutions for focusing stochastic nonlinear Schrödinger equations with linear multiplicative noise, in both the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{2}$$\end{document}-critical and subcritical cases. The constructed multi-solitons behave asymptotically as a sum of K solitary waves, where K is any given finite number. Moreover, the convergence rate of the remainders can be of either exponential or polynomial type, which reflects the effects of the noise in the system on the asymptotical behavior of the solutions. The major difficulty in our construction of stochastic multi-solitons is the absence of pseudo-conformal invariance. Unlike in the deterministic case (Merle in Commun Math Phys 129:223–240, 1990; Röckner et al. in Multi-bubble Bourgain–Wang solutions to nonlinear Schrödinger equation, arXiv: 2110.04107, 2021), the existence of stochastic multi-solitons cannot be obtained from that of stochastic multi-bubble blow-up solutions in Röckner et al. (Multi-bubble Bourgain–Wang solutions to nonlinear Schrödinger equation, arXiv:2110.04107, 2021), Su and Zhang (On the multi-bubble blow-up solutions to rough nonlinear Schrödinger equations, arXiv:2012.14037v1, 2020). Our proof is mainly based on the rescaling approach in Herr et al. (Commun Math Phys 368:843–884, 2019), relying on two types of Doss–Sussman transforms, and on the modulation method in Côte and Friederich (Commun Partial Differ Equ 46:2325–2385, 2021), Martel and Merle (Ann Inst H Poincaré Anal Non Linéaire 23:849–864, 2006), in which the crucial ingredient is the monotonicity of the Lyapunov type functional constructed by Martel et al. (Duke Math J 133:405-466, 2006). In our stochastic case, this functional depends on the Brownian paths in the noise.
引用
收藏
页码:813 / 876
页数:63
相关论文
共 50 条
  • [41] New solitary wave solutions to Biswas–Milovic and resonant nonlinear Schrödinger equations
    Wardat us Salam
    Hira Tariq
    Robina Rafeeq
    Hijaz Ahmad
    Khaled Mohamed Khedher
    Optical and Quantum Electronics, 56
  • [42] On the solitary wave dynamics, under slowly varying medium, for nonlinear Schrödinger equations
    Claudio Muñoz
    Mathematische Annalen, 2012, 353 : 867 - 943
  • [43] Invariant Measure for Stochastic Schrödinger Equations
    T. Benoist
    M. Fraas
    Y. Pautrat
    C. Pellegrini
    Annales Henri Poincaré, 2021, 22 : 347 - 374
  • [44] STOCHASTIC NONLINEAR SCHRÖDINGER EQUATIONS IN THE DEFOCUSING MASS AND ENERGY CRITICAL CASES
    Zhang, Deng
    ANNALS OF APPLIED PROBABILITY, 2023, 33 (05): : 3652 - 3705
  • [45] Stochastic Nonlinear Schrödinger Equations with Linear Multiplicative Noise: Rescaling Approach
    Viorel Barbu
    Michael Röckner
    Deng Zhang
    Journal of Nonlinear Science, 2014, 24 : 383 - 409
  • [46] Space Quasi-periodic Standing Waves for Nonlinear Schrödinger Equations
    W.-M. Wang
    Communications in Mathematical Physics, 2020, 378 : 783 - 806
  • [47] Nonlinear Schrödinger equations with symmetric multi-polar potentials
    Veronica Felli
    Susanna Terracini
    Calculus of Variations and Partial Differential Equations, 2006, 27
  • [48] Multi-peak solutions for a class of nonlinear Schrödinger equations
    Angela Pistoia
    Nonlinear Differential Equations and Applications NoDEA, 2002, 9 : 69 - 91
  • [49] Higher-Order Localized Waves in Coupled Nonlinear Schrdinger Equations
    王鑫
    杨波
    陈勇
    杨云青
    Chinese Physics Letters, 2014, 31 (09) : 5 - 8
  • [50] Stable standing waves for a class of nonlinear Schrödinger-Poisson equations
    Jacopo Bellazzini
    Gaetano Siciliano
    Zeitschrift für angewandte Mathematik und Physik, 2011, 62 : 267 - 280