We study blow-ups in generalized Kähler geometry. The natural candidates for submanifolds to be blown-up are those which are generalized Poisson submanifolds for one of the two generalized complex structures and can be blown up in a generalized complex manner. We show that the bi-Hermitian structure underlying the generalized Kähler pair lifts to a degenerate bi-Hermitian structure on this blow-up. Then, using a deformation procedure based on potentials in Kähler geometry, we identify two concrete situations in which one can deform the degenerate structure on the blow-up into a non-degenerate one. We end with a study of generalized Kähler Lie groups and give a concrete example on (S1)n×(S3)m\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${(S^1)^n \times (S^3)^m}$$\end{document}, for n + m even.
机构:
Tokyo Inst Technol, Dept Math, Meguro Ku, 2-12-1 Ookayama, Tokyo 1528551, JapanTokyo Inst Technol, Dept Math, Meguro Ku, 2-12-1 Ookayama, Tokyo 1528551, Japan
机构:
Univ Illinois, Dept Math Stat & Comp Sci, 851 S Morgan St, Chicago, IL 60607 USAUniv Illinois, Dept Math Stat & Comp Sci, 851 S Morgan St, Chicago, IL 60607 USA
机构:
Jagiellonian Univ, Fac Math & Comp Sci, Lojasiewicza 6, PL-30348 Krakow, PolandJagiellonian Univ, Fac Math & Comp Sci, Lojasiewicza 6, PL-30348 Krakow, Poland
Grzesik, Andrzej
Janzer, Oliver
论文数: 0引用数: 0
h-index: 0
机构:
Swiss Fed Inst Technol, Dept Math, Zurich, SwitzerlandJagiellonian Univ, Fac Math & Comp Sci, Lojasiewicza 6, PL-30348 Krakow, Poland
Janzer, Oliver
Nagy, Zoltan Lorant
论文数: 0引用数: 0
h-index: 0
机构:
Eotvos Lorand Univ, MTA ELTE Geometr & Algebra Combinator Res Grp, Budapest, HungaryJagiellonian Univ, Fac Math & Comp Sci, Lojasiewicza 6, PL-30348 Krakow, Poland