Blow-Ups in Generalized Kähler Geometry

被引:0
|
作者
J. L. van der Leer Durán
机构
[1] University of Toronto,
[2] Utrecht University,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We study blow-ups in generalized Kähler geometry. The natural candidates for submanifolds to be blown-up are those which are generalized Poisson submanifolds for one of the two generalized complex structures and can be blown up in a generalized complex manner. We show that the bi-Hermitian structure underlying the generalized Kähler pair lifts to a degenerate bi-Hermitian structure on this blow-up. Then, using a deformation procedure based on potentials in Kähler geometry, we identify two concrete situations in which one can deform the degenerate structure on the blow-up into a non-degenerate one. We end with a study of generalized Kähler Lie groups and give a concrete example on (S1)n×(S3)m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(S^1)^n \times (S^3)^m}$$\end{document}, for n +  m even.
引用
收藏
页码:1133 / 1156
页数:23
相关论文
共 50 条
  • [21] Birational geometry of moduli spaces of perverse coherent sheaves on blow-ups
    Naoki Koseki
    Mathematische Zeitschrift, 2021, 299 : 2379 - 2404
  • [22] Nonpositive curvature of blow-ups
    Davis M.
    Januszkiewicz T.
    Scott R.
    Selecta Mathematica, 1998, 4 (4) : 491 - 547
  • [23] Frobenius splittings and blow-ups
    Lakshmibai, V
    Mehta, VB
    Parameswaran, AJ
    JOURNAL OF ALGEBRA, 1998, 208 (01) : 101 - 128
  • [24] Lifting weighted blow-ups
    Andreatta, Marco
    REVISTA MATEMATICA IBEROAMERICANA, 2018, 34 (04) : 1809 - 1820
  • [25] BLOW-UPS AND MIXED MOTIVES
    Hanamura, Masaki
    TOHOKU MATHEMATICAL JOURNAL, 2011, 63 (04) : 751 - 774
  • [26] The quantum cohomology of blow-ups of P2 and enumerative geometry
    Gottsche, L
    Pandharipande, R
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1998, 48 (01) : 61 - 90
  • [27] Symmetries in Generalized Kähler Geometry
    Yi Lin
    Susan Tolman
    Communications in Mathematical Physics, 2006, 268 : 199 - 222
  • [28] Extremal Graphs for Blow-Ups of Keyrings
    Ni, Zhenyu
    Kang, Liying
    Shan, Erfang
    Zhu, Hui
    GRAPHS AND COMBINATORICS, 2020, 36 (06) : 1827 - 1853
  • [29] Two inequalities for a sequence of blow-ups
    A. V. Pukhlikov
    Mathematical Notes, 2015, 97 : 970 - 973
  • [30] b-STABILITY AND BLOW-UPS
    Donaldson, S. K.
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2014, 57 (01) : 125 - 137