Unique Continuation from Infinity in Asymptotically Anti-de Sitter Spacetimes

被引:0
|
作者
Gustav Holzegel
Arick Shao
机构
[1] Imperial College,Department of Mathematics
来源
关键词
Minkowski Spacetime; Null Geodesic; Unique Continuation; Conformal Boundary; Carleman Estimate;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the unique continuation properties of asymptotically anti-de Sitter spacetimes by studying Klein–Gordon-type equations □gϕ+σϕ=G(ϕ,∂ϕ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Box_g \phi + \sigma \phi = {\mathcal{G}} ( \phi, \partial \phi )}$$\end{document}, σ∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sigma \in {\mathbb{R}}}$$\end{document}, on a large class of such spacetimes. Our main result establishes that if ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\phi}$$\end{document} vanishes to sufficiently high order (depending on σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sigma}$$\end{document}) on a sufficiently long time interval along the conformal boundary I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal{I}}}$$\end{document}, then the solution necessarily vanishes in a neighborhood of I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal{I}}}$$\end{document}. In particular, in the σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sigma}$$\end{document}-range where Dirichlet and Neumann conditions are possible on I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal{I}}}$$\end{document} for the forward problem, we prove uniqueness if both these conditions are imposed. The length of the time interval can be related to the refocusing time of null geodesics on these backgrounds and is expected to be sharp. Some global applications as well as a uniqueness result for gravitational perturbations are also discussed. The proof is based on novel Carleman estimates established in this setting.
引用
下载
收藏
页码:723 / 775
页数:52
相关论文
共 50 条
  • [1] Unique Continuation from Infinity in Asymptotically Anti-de Sitter Spacetimes
    Holzegel, Gustav
    Shao, Arick
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 347 (03) : 723 - 775
  • [2] Unique continuation from infinity in asymptotically anti-de Sitter spacetimes II: Non-static boundaries
    Holzegel, Gustav
    Shao, Arick
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2017, 42 (12) : 1871 - 1922
  • [3] Null geodesics and improved unique continuation for waves in asymptotically anti-de Sitter spacetimes
    McGill, Alex
    Shao, Arick
    CLASSICAL AND QUANTUM GRAVITY, 2020, 38 (05)
  • [4] A Gauge-Invariant Unique Continuation Criterion for Waves in Asymptotically Anti-de Sitter Spacetimes
    Athanasios Chatzikaleas
    Arick Shao
    Communications in Mathematical Physics, 2022, 395 : 521 - 570
  • [5] A Gauge-Invariant Unique Continuation Criterion for Waves in Asymptotically Anti-de Sitter Spacetimes
    Chatzikaleas, Athanasios
    Shao, Arick
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2022, 395 (02) : 521 - 570
  • [6] Singularities in asymptotically anti-de Sitter spacetimes
    Ishibashi, Akihiro
    Maeda, Kengo
    PHYSICAL REVIEW D, 2012, 86 (10):
  • [7] GRAVITATIONAL ENERGY IN ASYMPTOTICALLY ANTI-DE SITTER SPACETIMES
    PINTONETO, N
    SOARES, ID
    PHYSICAL REVIEW D, 1995, 52 (10): : 5665 - 5669
  • [8] Gravitational geons in asymptotically anti-de Sitter spacetimes
    Martinon, Gregoire
    Fodor, Gyula
    Grandclement, Philippe
    Forgacs, Peter
    CLASSICAL AND QUANTUM GRAVITY, 2017, 34 (12)
  • [9] Gravitational energy in asymptotically anti-de Sitter spacetimes
    Pinto-Neto, N.
    Soares, I. D.
    Physical Review D Particles, Fields, Gravitation and Cosmology, 520 (10):
  • [10] Mass of asymptotically anti-de Sitter hairy spacetimes
    Anabalon, Andres
    Astefanesei, Dumitru
    Martinez, Cristian
    PHYSICAL REVIEW D, 2015, 91 (04)