Unique Continuation from Infinity in Asymptotically Anti-de Sitter Spacetimes

被引:0
|
作者
Gustav Holzegel
Arick Shao
机构
[1] Imperial College,Department of Mathematics
来源
关键词
Minkowski Spacetime; Null Geodesic; Unique Continuation; Conformal Boundary; Carleman Estimate;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the unique continuation properties of asymptotically anti-de Sitter spacetimes by studying Klein–Gordon-type equations □gϕ+σϕ=G(ϕ,∂ϕ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Box_g \phi + \sigma \phi = {\mathcal{G}} ( \phi, \partial \phi )}$$\end{document}, σ∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sigma \in {\mathbb{R}}}$$\end{document}, on a large class of such spacetimes. Our main result establishes that if ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\phi}$$\end{document} vanishes to sufficiently high order (depending on σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sigma}$$\end{document}) on a sufficiently long time interval along the conformal boundary I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal{I}}}$$\end{document}, then the solution necessarily vanishes in a neighborhood of I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal{I}}}$$\end{document}. In particular, in the σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sigma}$$\end{document}-range where Dirichlet and Neumann conditions are possible on I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal{I}}}$$\end{document} for the forward problem, we prove uniqueness if both these conditions are imposed. The length of the time interval can be related to the refocusing time of null geodesics on these backgrounds and is expected to be sharp. Some global applications as well as a uniqueness result for gravitational perturbations are also discussed. The proof is based on novel Carleman estimates established in this setting.
引用
下载
收藏
页码:723 / 775
页数:52
相关论文
共 50 条
  • [41] Asymptotically anti-de Sitter Proca stars
    Duarte, Miguel
    Brito, Richard
    PHYSICAL REVIEW D, 2016, 94 (06)
  • [42] Gravitational collapse in asymptotically anti-de Sitter or de Sitter backgrounds
    Madhav, TA
    Goswami, R
    Joshi, PS
    PHYSICAL REVIEW D, 2005, 72 (08)
  • [43] Positive energy theorem for (4+1)-dimensional asymptotically anti-de Sitter spacetimes
    Wang YaoHua
    Xu Xu
    SCIENCE CHINA-MATHEMATICS, 2014, 57 (02) : 389 - 396
  • [44] The near-boundary geometry of Einstein-vacuum asymptotically anti-de Sitter spacetimes
    Shao, Arick
    CLASSICAL AND QUANTUM GRAVITY, 2021, 38 (03)
  • [45] Positive energy theorem for(4+1)-dimensional asymptotically anti-de Sitter spacetimes
    WANG YaoHua
    XU Xu
    Science China Mathematics, 2014, 57 (02) : 389 - 396
  • [46] Positive energy theorem for (4+1)-dimensional asymptotically anti-de Sitter spacetimes
    YaoHua Wang
    Xu Xu
    Science China Mathematics, 2014, 57 : 389 - 396
  • [47] Holographic Characterisation of Locally Anti-de Sitter Spacetimes
    Alex McGill
    Annales Henri Poincaré, 2023, 24 : 2137 - 2181
  • [48] Holographic Characterisation of Locally Anti-de Sitter Spacetimes
    McGill, Alex
    ANNALES HENRI POINCARE, 2023, 24 (06): : 2137 - 2181
  • [49] The Rest Mass of an Asymptotically Anti-de Sitter Spacetime
    Chen, Po-Ning
    Hung, Pei-Ken
    Wang, Mu-Tao
    Yau, Shing-Tung
    ANNALES HENRI POINCARE, 2017, 18 (05): : 1493 - 1518
  • [50] Geometrothermodynamics of asymptotically Anti-de Sitter black holes
    Quevedo, Hernando
    Sanchez, Alberto
    JOURNAL OF HIGH ENERGY PHYSICS, 2008, (09):