A Gauge-Invariant Unique Continuation Criterion for Waves in Asymptotically Anti-de Sitter Spacetimes

被引:0
|
作者
Athanasios Chatzikaleas
Arick Shao
机构
[1] Mathematical Institute,Westfälische Wilhelms
[2] Queen Mary University of London,Universität Münster
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We reconsider the unique continuation property for a general class of tensorial Klein–Gordon equations of the form □gϕ+σϕ=G(ϕ,∇ϕ),σ∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \Box _{g} \phi + \sigma \phi = {\mathcal {G}}(\phi ,\nabla \phi ) \text {,} \qquad \sigma \in {\mathbb {R}} \end{aligned}$$\end{document}on a large class of asymptotically anti-de-Sitter spacetimes. In particular, we aim to generalize the previous results of Holzegel, McGill, and the second author (Holzegel and Shao in Commun Math Phys 347(3):723–775, 2016; Commun Partial Differ Equ 42(12):1871–1922, 2017; McGill and Shao in Class Quantum Gravity 38(5):054001, 2021) (which established the above-mentioned unique continuation property through novel Carleman estimates near the conformal boundary) in the following ways: We replace the so-called null convexity criterion—the key geometric assumption on the conformal boundary needed in McGill and Shao (2021) to establish the unique continuation properties—by a more general criterion that is also gauge invariant.Our new unique continuation property can be applied from a larger, more general class of domains on the conformal boundary.Similar to McGill and Shao (2021), we connect the failure of our generalized criterion to the existence of certain null geodesics near the conformal boundary. These geodesics are closely related to the classical Alinhac-Baouendi counterexamples to unique continuation (Alinhac and Baouendi in Math Z 220(4):561–568, 1995). Finally, our gauge-invariant criterion and Carleman estimate will constitute a key ingredient in proving unique continuation results for the full nonlinear Einstein-vacuum equations, which will be addressed in a forthcoming paper of Holzegel and the second author (Holzegel and Shao in Unique continuation for the Einstein equations in asymptotically anti-de sitter spacetimes (in preparation), 2022).
引用
收藏
页码:521 / 570
页数:49
相关论文
共 50 条
  • [1] A Gauge-Invariant Unique Continuation Criterion for Waves in Asymptotically Anti-de Sitter Spacetimes
    Chatzikaleas, Athanasios
    Shao, Arick
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2022, 395 (02) : 521 - 570
  • [2] Null geodesics and improved unique continuation for waves in asymptotically anti-de Sitter spacetimes
    McGill, Alex
    Shao, Arick
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2020, 38 (05)
  • [3] Unique Continuation from Infinity in Asymptotically Anti-de Sitter Spacetimes
    Gustav Holzegel
    Arick Shao
    [J]. Communications in Mathematical Physics, 2016, 347 : 723 - 775
  • [4] Unique Continuation from Infinity in Asymptotically Anti-de Sitter Spacetimes
    Holzegel, Gustav
    Shao, Arick
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 347 (03) : 723 - 775
  • [5] Singularities in asymptotically anti-de Sitter spacetimes
    Ishibashi, Akihiro
    Maeda, Kengo
    [J]. PHYSICAL REVIEW D, 2012, 86 (10):
  • [6] Unique continuation from infinity in asymptotically anti-de Sitter spacetimes II: Non-static boundaries
    Holzegel, Gustav
    Shao, Arick
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2017, 42 (12) : 1871 - 1922
  • [7] Gravitational geons in asymptotically anti-de Sitter spacetimes
    Martinon, Gregoire
    Fodor, Gyula
    Grandclement, Philippe
    Forgacs, Peter
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2017, 34 (12)
  • [8] GRAVITATIONAL ENERGY IN ASYMPTOTICALLY ANTI-DE SITTER SPACETIMES
    PINTONETO, N
    SOARES, ID
    [J]. PHYSICAL REVIEW D, 1995, 52 (10): : 5665 - 5669
  • [9] Gravitational energy in asymptotically anti-de Sitter spacetimes
    Pinto-Neto, N.
    Soares, I. D.
    [J]. Physical Review D Particles, Fields, Gravitation and Cosmology, 520 (10):
  • [10] Mass of asymptotically anti-de Sitter hairy spacetimes
    Anabalon, Andres
    Astefanesei, Dumitru
    Martinez, Cristian
    [J]. PHYSICAL REVIEW D, 2015, 91 (04)