Nonlocal optimized schwarz methods for time-harmonic electromagnetics

被引:0
|
作者
Xavier Claeys
Francis Collino
Emile Parolin
机构
[1] Sorbonne Université-Université de Paris-CNRS-INRIA,LJLL
[2] Poems,Dipartimento di Matematica
[3] CNRS-INRIA-ENSTA Paris,undefined
[4] IP Paris,undefined
[5] Università degli Studi di Pavia,undefined
来源
关键词
Wave propagation problem; Electromagnetics; Domain decomposition; Optimized Schwarz method; Cross-points; 65N55; 65F10; 65N22; 35Q61;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce a new domain decomposition strategy for time harmonic Maxwell’s equations that is valid in the case of automatically generated subdomain partitions with possible presence of cross-points. The convergence of the algorithm is guaranteed and we present a complete analysis of the matrix form of the method. The method involves transmission matrices responsible for imposing coupling between subdomains. We discuss the choice of such matrices, their construction and the impact of this choice on the convergence of the domain decomposition algorithm. Numerical results and algorithms are provided.
引用
收藏
相关论文
共 50 条
  • [21] Two-grid methods for time-harmonic Maxwell equations
    Zhong, Liuqiang
    Shu, Shi
    Wang, Junxian
    Xu, J.
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2013, 20 (01) : 93 - 111
  • [22] Schwarz Preconditioning for High Order Edge Element Discretizations of the Time-Harmonic Maxwell's Equations
    Bonazzoli, Marcella
    Dolean, Victorita
    Pasquetti, Richard
    Rapetti, Francesca
    DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING XXIII, 2017, 116 : 117 - 124
  • [23] MULTILEVEL OPTIMIZED SCHWARZ METHODS
    Gander, Martin J.
    Vanzan, Tommaso
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (05): : A3180 - A3209
  • [24] Time-Harmonic Echo Generation
    Capozzoli, Amedeo
    Curcio, Claudio
    Liseno, Angelo
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2011, 59 (09) : 3234 - 3245
  • [25] Hybridizable discontinuous Galerkin methods for the time-harmonic Maxwell's equations
    Nguyen, N. C.
    Peraire, J.
    Cockburn, B.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (19) : 7151 - 7175
  • [26] Solution of the time-harmonic, Maxwell equations using discontinuous Galerkin methods
    Dolean, V.
    Fol, H.
    Lanteri, S.
    Perrussel, R.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 218 (02) : 435 - 445
  • [27] UNIFORM CONVERGENCE OF LOCAL MULTIGRID METHODS FOR THE TIME-HARMONIC MAXWELL EQUATION
    Chen, Huangxin
    Hoppe, Ronald H. W.
    Xu, Xuejun
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2013, 47 (01): : 125 - 147
  • [28] Metasurface Synthesis for Time-Harmonic Waves: Exact Spectral and Spatial Methods
    Salem, Mohamed A.
    Achouri, Karim
    Caloz, Christophe
    PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER, 2014, 149 : 205 - 216
  • [29] Domain decomposition methods for time-harmonic Maxwell equations:: Numerical results
    Rodríguez, AA
    Valli, A
    RECENT DEVELOPMENTS IN DOMAIN DECOMPOSITION METHODS, 2002, 23 : 157 - 171
  • [30] Time-harmonic elasticity with controllability and higher-order discretization methods
    Monkola, Sanna
    Heikkola, Erkki
    Pennanen, Anssi
    Rossi, Tuomo
    JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (11) : 5513 - 5534