UNIFORM CONVERGENCE OF LOCAL MULTIGRID METHODS FOR THE TIME-HARMONIC MAXWELL EQUATION

被引:4
|
作者
Chen, Huangxin [1 ]
Hoppe, Ronald H. W. [2 ,3 ]
Xu, Xuejun [1 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, LSEC, Beijing 100190, Peoples R China
[2] Univ Houston, Dept Math, Houston, TX 77204 USA
[3] Univ Augsburg, Inst Math, D-86159 Augsburg, Germany
基金
美国国家科学基金会;
关键词
Maxwell equations; Nedelec edge elements; indefinite; multigrid methods; local Hiptmair smoothers; adaptive edge finite element methods; optimality; FINITE-ELEMENT METHODS; MULTILEVEL METHODS; MESH REFINEMENT; V-CYCLE; INDEFINITE; OPTIMALITY; PRECONDITIONERS; ALGORITHM; H(DIV);
D O I
10.1051/m2an/2012023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For the efficient numerical solution of indefinite linear systems arising from curl conforming edge element approximations of the time-harmonic Maxwell equation, we consider local multigrid methods (LMM) on adaptively refined meshes. The edge element discretization is done by the lowest order edge elements of Nedelec's first family. The LMM features local hybrid Hiptmair smoothers of Jacobi and Gauss-Seidel type which are performed only on basis functions associated with newly created edges/nodal points or those edges/nodal points where the support of the corresponding basis function has changed during the refinement process. The adaptive mesh refinement is based on Dorfler marking for residual-type a posteriori error estimators and the newest vertex bisection strategy. Using the abstract Schwarz theory of multilevel iterative schemes, quasi-optimal convergence of the LMM is shown, i.e., the convergence rates are independent of mesh sizes and mesh levels provided the coarsest mesh is chosen sufficiently fine. The theoretical findings are illustrated by the results of some numerical examples.
引用
收藏
页码:125 / 147
页数:23
相关论文
共 50 条
  • [1] Multigrid preconditioning for Krylov methods for time-harmonic Maxwell's equations in three dimensions
    Aruliah, DA
    Ascher, UM
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2002, 24 (02): : 702 - 718
  • [2] On a critical time-harmonic Maxwell equation in nonlocal media
    Yang, Minbo
    Ye, Weiwei
    Zhang, Shuijin
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2024,
  • [3] CONVERGENCE AND OPTIMALITY OF ADAPTIVE EDGE FINITE ELEMENT METHODS FOR TIME-HARMONIC MAXWELL EQUATIONS
    Zhong, Liuqiang
    Chen, Long
    Shu, Shi
    Wittum, Gabriel
    Xu, Jinchao
    [J]. MATHEMATICS OF COMPUTATION, 2012, 81 (278) : 623 - 642
  • [4] Adaptive local multigrid methods for solving time-harmonic eddy-current problems
    Sterz, O
    Hauser, A
    Wittum, G
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2006, 42 (02) : 309 - 318
  • [5] Convergence of an AEFEM for time-harmonic Maxwell equations with variable coefficients
    Xie, Yingying
    Zhong, Liuqiang
    Liu, Chunmei
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 372
  • [6] Discontinuous Galerkin methods for the time-harmonic Maxwell equations
    Houston, P
    Perugia, I
    Schneebeli, A
    Schötzau, D
    [J]. NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, PROCEEDINGS, 2004, : 483 - 492
  • [7] Surface and Volume Integral Equation Methods for Time-Harmonic Solutions of Maxwell's Equations
    Yla-Oijala, Pasi
    Markkanen, Johannes
    Jarvenpaa, Seppo
    Kiminki, Sami P.
    [J]. PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER, 2014, 149 : 15 - 44
  • [8] Stabilized interior penalty methods for the time-harmonic Maxwell equations
    Perugia, I
    Schötzau, D
    Monk, P
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2002, 191 (41-42) : 4675 - 4697
  • [9] Two-grid methods for time-harmonic Maxwell equations
    Zhong, Liuqiang
    Shu, Shi
    Wang, Junxian
    Xu, J.
    [J]. NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2013, 20 (01) : 93 - 111
  • [10] OPTIMIZED SCHWARZ METHODS FOR THE TIME-HARMONIC MAXWELL EQUATIONS WITH DAMPING
    El Bouajaji, M.
    Dolean, V.
    Gander, M. J.
    Lanteri, S.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (04): : A2048 - A2071