UNIFORM CONVERGENCE OF LOCAL MULTIGRID METHODS FOR THE TIME-HARMONIC MAXWELL EQUATION

被引:4
|
作者
Chen, Huangxin [1 ]
Hoppe, Ronald H. W. [2 ,3 ]
Xu, Xuejun [1 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, LSEC, Beijing 100190, Peoples R China
[2] Univ Houston, Dept Math, Houston, TX 77204 USA
[3] Univ Augsburg, Inst Math, D-86159 Augsburg, Germany
基金
美国国家科学基金会;
关键词
Maxwell equations; Nedelec edge elements; indefinite; multigrid methods; local Hiptmair smoothers; adaptive edge finite element methods; optimality; FINITE-ELEMENT METHODS; MULTILEVEL METHODS; MESH REFINEMENT; V-CYCLE; INDEFINITE; OPTIMALITY; PRECONDITIONERS; ALGORITHM; H(DIV);
D O I
10.1051/m2an/2012023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For the efficient numerical solution of indefinite linear systems arising from curl conforming edge element approximations of the time-harmonic Maxwell equation, we consider local multigrid methods (LMM) on adaptively refined meshes. The edge element discretization is done by the lowest order edge elements of Nedelec's first family. The LMM features local hybrid Hiptmair smoothers of Jacobi and Gauss-Seidel type which are performed only on basis functions associated with newly created edges/nodal points or those edges/nodal points where the support of the corresponding basis function has changed during the refinement process. The adaptive mesh refinement is based on Dorfler marking for residual-type a posteriori error estimators and the newest vertex bisection strategy. Using the abstract Schwarz theory of multilevel iterative schemes, quasi-optimal convergence of the LMM is shown, i.e., the convergence rates are independent of mesh sizes and mesh levels provided the coarsest mesh is chosen sufficiently fine. The theoretical findings are illustrated by the results of some numerical examples.
引用
收藏
页码:125 / 147
页数:23
相关论文
共 50 条
  • [31] Adjoint variable method for time-harmonic Maxwell equations
    Durand, Stephane
    Cimrak, Ivan
    Sergeant, Peter
    [J]. COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2009, 28 (05) : 1202 - 1215
  • [32] Parallel Numerical Solution of the Time-Harmonic Maxwell Equations
    Li, Dan
    [J]. HIGH PERFORMANCE COMPUTING AND APPLICATIONS, 2010, 5938 : 224 - 229
  • [33] Sparsifying preconditioner for the time-harmonic Maxwell's equations
    Liu, Fei
    Ying, Lexing
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 376 : 913 - 923
  • [34] CAUCHY PROBLEM FOR THE QUATERNIONIC TIME-HARMONIC MAXWELL EQUATIONS
    Sattorov, E. N.
    Ermamatova, Z. E.
    [J]. SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2015, 12 : C129 - C137
  • [35] Time-harmonic Maxwell equations with asymptotically linear polarization
    Dongdong Qin
    Xianhua Tang
    [J]. Zeitschrift für angewandte Mathematik und Physik, 2016, 67
  • [36] Analysis of a multigrid algorithm for time harmonic Maxwell equations
    Gopalakrishnan, J
    Pasciak, JE
    Demkowicz, LF
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2004, 42 (01) : 90 - 108
  • [37] A nonconforming mixed method for the time-harmonic Maxwell equations
    Douglas, J
    Santos, JE
    Sheen, D
    [J]. FIFTH INTERNATIONAL CONFERENCE ON MATHEMATICAL AND NUMERICAL ASPECTS OF WAVE PROPAGATION, 2000, : 792 - 796
  • [38] THE TIME-HARMONIC MAXWELL EQUATIONS IN A DOUBLY PERIODIC STRUCTURE
    DOBSON, D
    FRIEDMAN, A
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1992, 166 (02) : 507 - 528
  • [39] Optimized Schwarz Methods for Curl-Curl Time-Harmonic Maxwell's Equations
    Dolean, Victorita
    Gander, Martin J.
    Lanteri, Stephane
    Lee, Jin-Fa
    Peng, Zhen
    [J]. DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING XXI, 2014, 98 : 587 - 595
  • [40] Multiplicative block preconditioner for the time-harmonic Maxwell equations
    Huang, Zhuo-Hong
    [J]. INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2014, 52 (09): : 144 - 152