On a critical time-harmonic Maxwell equation in nonlocal media

被引:0
|
作者
Yang, Minbo [1 ]
Ye, Weiwei [1 ,2 ]
Zhang, Shuijin [1 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
[2] Fuyang Normal Univ, Dept Math, Fuyang 236037, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
time-harmonic Maxwell equation; Brezis-Nirenberg problem; nonlocal nonlinearity; coulomb space; sharp constant; STATE SOLUTIONS; GROUND-STATES; EXISTENCE; MODES;
D O I
10.1017/prm.2024.11
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the existence of solutions for a critical time-harmonic Maxwell equation in nonlocal media ( del x (del x u) + lambda u = I-alpha* |u|(2)(alpha)& lowast;|u|(2)(alpha)& lowast;(-2)u in Omega, nu x u = 0 on partial derivative Omega, where Omega subset of R-3 is a bounded domain, either convex or with C-1,C-1 boundary, nu is the exterior normal, lambda < 0 is a real parameter, 2(alpha)(& lowast;) = 3+ alpha with 0 < alpha < 3 is the upper critical exponent due to the Hardy-Littlewood-Sobolev inequality. By introducing some suitable Coulomb spaces involving curl operator W-0(alpha)alpha,2 & lowast; (curl; Omega), we are able to alpha obtain the ground state solutions of the curl-curl equation via the method of constraining Nehari-Pankov manifold. Correspondingly, some sharp constants of the Sobolev-like inequalities with curl operator are obtained by a nonlocal version of the concentration-compactness principle.
引用
收藏
页数:45
相关论文
共 50 条
  • [1] Time-harmonic and asymptotically linear Maxwell equations in anisotropic media
    Qin, Dongdong
    Tang, Xianhua
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (01) : 317 - 335
  • [2] ANALYSIS OF TIME-HARMONIC MAXWELL IMPEDANCE PROBLEMS IN ANISOTROPIC MEDIA
    Chicaud, Damien
    Ciarlet, Patrick
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2023, 55 (03) : 1969 - 2000
  • [3] UNIFORM CONVERGENCE OF LOCAL MULTIGRID METHODS FOR THE TIME-HARMONIC MAXWELL EQUATION
    Chen, Huangxin
    Hoppe, Ronald H. W.
    Xu, Xuejun
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2013, 47 (01): : 125 - 147
  • [4] QUATERNIONIC TIME-HARMONIC MAXWELL OPERATOR
    KRAVCHENKO, VV
    SHAPIRO, MV
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (17): : 5017 - 5031
  • [5] Model order reduction for the time-harmonic Maxwell equation applied to complex nanostructures
    Hammerschmidt, Martin
    Herrmann, Sven
    Pomplun, Jan
    Burger, Sven
    Schmidt, Frank
    PHYSICS AND SIMULATION OF OPTOELECTRONIC DEVICES XXIV, 2016, 9742
  • [6] Nonlinear time-harmonic Maxwell equations in domains
    Thomas Bartsch
    Jarosław Mederski
    Journal of Fixed Point Theory and Applications, 2017, 19 : 959 - 986
  • [7] Nonlinear time-harmonic Maxwell equations in domains
    Bartsch, Thomas
    Mederski, Jarosaw
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2017, 19 (01) : 959 - 986
  • [8] Surface and Volume Integral Equation Methods for Time-Harmonic Solutions of Maxwell's Equations
    Yla-Oijala, Pasi
    Markkanen, Johannes
    Jarvenpaa, Seppo
    Kiminki, Sami P.
    PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER, 2014, 149 : 15 - 44
  • [9] Explicit bounds for the high-frequency time-harmonic Maxwell equations in heterogeneous media
    Chaumont-Frelet, Theophile
    Moiola, Andrea
    Spence, Euan A.
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2023, 179 : 183 - 218
  • [10] Adjoint variable method for time-harmonic Maxwell equations
    Durand, Stephane
    Cimrak, Ivan
    Sergeant, Peter
    COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2009, 28 (05) : 1202 - 1215