On a critical time-harmonic Maxwell equation in nonlocal media

被引:0
|
作者
Yang, Minbo [1 ]
Ye, Weiwei [1 ,2 ]
Zhang, Shuijin [1 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
[2] Fuyang Normal Univ, Dept Math, Fuyang 236037, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
time-harmonic Maxwell equation; Brezis-Nirenberg problem; nonlocal nonlinearity; coulomb space; sharp constant; STATE SOLUTIONS; GROUND-STATES; EXISTENCE; MODES;
D O I
10.1017/prm.2024.11
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the existence of solutions for a critical time-harmonic Maxwell equation in nonlocal media ( del x (del x u) + lambda u = I-alpha* |u|(2)(alpha)& lowast;|u|(2)(alpha)& lowast;(-2)u in Omega, nu x u = 0 on partial derivative Omega, where Omega subset of R-3 is a bounded domain, either convex or with C-1,C-1 boundary, nu is the exterior normal, lambda < 0 is a real parameter, 2(alpha)(& lowast;) = 3+ alpha with 0 < alpha < 3 is the upper critical exponent due to the Hardy-Littlewood-Sobolev inequality. By introducing some suitable Coulomb spaces involving curl operator W-0(alpha)alpha,2 & lowast; (curl; Omega), we are able to alpha obtain the ground state solutions of the curl-curl equation via the method of constraining Nehari-Pankov manifold. Correspondingly, some sharp constants of the Sobolev-like inequalities with curl operator are obtained by a nonlocal version of the concentration-compactness principle.
引用
收藏
页数:45
相关论文
共 50 条
  • [41] The energy method for constructing time-harmonic solutions to the maxwell equations
    Denisenko V.V.
    Siberian Mathematical Journal, 2011, 52 (2) : 207 - 221
  • [42] Domain decomposition approach for heterogeneous time-harmonic Maxwell equations
    Universidad Complutense de Madrid, Madrid, Spain
    Comput Methods Appl Mech Eng, 1-2 (97-112):
  • [43] On the Regularity of Time-Harmonic Maxwell Equations with Impedance Boundary Conditions
    Chen, Zhiming
    COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2025, 7 (02) : 759 - 770
  • [44] Interior penalty method for the indefinite time-harmonic Maxwell equations
    Paul Houston
    Ilaria Perugia
    Anna Schneebeli
    Dominik Schötzau
    Numerische Mathematik, 2005, 100 : 485 - 518
  • [45] Nonlinear time-harmonic Maxwell equations in an anisotropic bounded medium
    Bartsch, Thomas
    Mederski, Jaroslaw
    JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 272 (10) : 4304 - 4333
  • [46] Convergence of an AEFEM for time-harmonic Maxwell equations with variable coefficients
    Xie, Yingying
    Zhong, Liuqiang
    Liu, Chunmei
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 372
  • [47] OPTIMIZED SCHWARZ METHODS FOR THE TIME-HARMONIC MAXWELL EQUATIONS WITH DAMPING
    El Bouajaji, M.
    Dolean, V.
    Gander, M. J.
    Lanteri, S.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (04): : A2048 - A2071
  • [48] Wire approximation for Poisson and time-harmonic Maxwell equations.
    Rogier, Francois
    Roussel, Jean-Francois
    Volpert, Dominique
    COMPTES RENDUS MATHEMATIQUE, 2006, 343 (10) : 633 - 636
  • [49] THE ENERGY METHOD FOR CONSTRUCTING TIME-HARMONIC SOLUTIONS TO THE MAXWELL EQUATIONS
    Denisenko, V. V.
    SIBERIAN MATHEMATICAL JOURNAL, 2011, 52 (02) : 207 - 221
  • [50] Two-grid methods for time-harmonic Maxwell equations
    Zhong, Liuqiang
    Shu, Shi
    Wang, Junxian
    Xu, J.
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2013, 20 (01) : 93 - 111