Nonlocal optimized schwarz methods for time-harmonic electromagnetics

被引:0
|
作者
Xavier Claeys
Francis Collino
Emile Parolin
机构
[1] Sorbonne Université-Université de Paris-CNRS-INRIA,LJLL
[2] Poems,Dipartimento di Matematica
[3] CNRS-INRIA-ENSTA Paris,undefined
[4] IP Paris,undefined
[5] Università degli Studi di Pavia,undefined
来源
关键词
Wave propagation problem; Electromagnetics; Domain decomposition; Optimized Schwarz method; Cross-points; 65N55; 65F10; 65N22; 35Q61;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce a new domain decomposition strategy for time harmonic Maxwell’s equations that is valid in the case of automatically generated subdomain partitions with possible presence of cross-points. The convergence of the algorithm is guaranteed and we present a complete analysis of the matrix form of the method. The method involves transmission matrices responsible for imposing coupling between subdomains. We discuss the choice of such matrices, their construction and the impact of this choice on the convergence of the domain decomposition algorithm. Numerical results and algorithms are provided.
引用
收藏
相关论文
共 50 条
  • [1] Nonlocal optimized schwarz methods for time-harmonic electromagnetics
    Claeys, Xavier
    Collino, Francis
    Parolin, Emile
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2022, 48 (06)
  • [2] OPTIMIZED SCHWARZ METHODS FOR THE TIME-HARMONIC MAXWELL EQUATIONS WITH DAMPING
    El Bouajaji, M.
    Dolean, V.
    Gander, M. J.
    Lanteri, S.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (04): : A2048 - A2071
  • [3] Optimized Schwarz Methods for Curl-Curl Time-Harmonic Maxwell's Equations
    Dolean, Victorita
    Gander, Martin J.
    Lanteri, Stephane
    Lee, Jin-Fa
    Peng, Zhen
    [J]. DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING XXI, 2014, 98 : 587 - 595
  • [4] GetDDM: An open framework for testing optimized Schwarz methods for time-harmonic wave problems
    Thierry, B.
    Vion, A.
    Tournier, S.
    El Bouajaji, M.
    Colignon, D.
    Marsic, N.
    Antoine, X.
    Geuzaine, C.
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2016, 203 : 309 - 330
  • [5] DISCONTINUOUS GALERKIN DISCRETIZATIONS OF OPTIMIZED SCHWARZ METHODS FOR SOLVING THE TIME-HARMONIC MAXWELL'S EQUATIONS
    El Bouajaji, Mohamed
    Dolean, Victorita
    Gander, Martin J.
    Lanteri, Stephane
    Perrussel, Ronan
    [J]. ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2015, 44 : 572 - 592
  • [6] A Domain Decomposition Preconditioner for Time-Harmonic Electromagnetics
    Rawat, Vineet
    Lee, Jin-Fa
    [J]. 2008 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM, VOLS 1-9, 2008, : 3435 - 3438
  • [7] Optimized Schwarz algorithms for solving time-harmonic Maxwell's equations discretized by a discontinuous Galerkin method
    Dolean, Victorita
    Lanteri, Stephane
    Perrussel, Ronan
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2008, 44 (06) : 954 - 957
  • [8] On a critical time-harmonic Maxwell equation in nonlocal media
    Yang, Minbo
    Ye, Weiwei
    Zhang, Shuijin
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2024,
  • [9] Optimized Schwarz algorithms for solving time-harmonic Maxwell's equations discretized by a hybridizable discontinuous Galerkin method
    He, Yu-Xuan
    Li, Liang
    Lanteri, Stephane
    Huang, Ting-Zhu
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2016, 200 : 176 - 181
  • [10] Optimized Schwarz Methods
    Nataf, F.
    [J]. DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING XVIII, 2009, 70 : 233 - 240