Minimizing the weighted number of tardy jobs with due date assignment and capacity-constrained deliveries

被引:0
|
作者
George Steiner
Rui Zhang
机构
[1] McMaster University,Operations Management Area, DeGroote School of Business
来源
关键词
Scheduling; Due date assignment; Batching; Number of tardy jobs;
D O I
暂无
中图分类号
学科分类号
摘要
We study a supply chain scheduling problem, where a common due date is assigned to all jobs and the number of jobs in delivery batches is constrained by the batch size. Our goal is to minimize the sum of the weighted number of tardy jobs, the due-date-assignment costs and the batch-delivery costs. We show that some well-known \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{NP}$\end{document}-hard problems reduce to our problem. Then we propose a pseudo-polynomial algorithm for the problem, establishing that it is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{NP}$\end{document}-hard only in the ordinary sense. Finally, we convert the algorithm into an efficient fully polynomial time approximation scheme.
引用
收藏
页码:171 / 181
页数:10
相关论文
共 50 条