Non-parametric bootstrap tests for parametric distribution families

被引:0
|
作者
Gábor Szűcs
机构
[1] Bolyai Institute,
来源
Acta Scientiarum Mathematicarum | 2011年 / 77卷 / 3-4期
关键词
bootstrap; parametric estimation; empirical process; approximation; convergence in distribution; 62E20; 62F40; 62G30;
D O I
10.1007/BF03651319
中图分类号
学科分类号
摘要
Durbin’s estimated empirical process is a widely used tool to testing goodness of fit for parametric distribution families. In general, statistical methods based on the process are not distribution free and the critical values can not always be calculated in a theoretical way. One can avoid these difficulties by applying the parametric or the non-parametric bootstrap procedure. Although the parametric bootstrapped estimated empirical process is well investigated, only a few papers dealt with the non-parametric version. Recently, Babu and Rao pointed out that in the latter case a bias correction is needed, and they proved the weak convergence of the bootstrapped process in continuous distribution families. Our paper presents a weak approximation theorem for the non-parametric bootstrapped estimated empirical process using similar conditions under which Durbin’s non-bootstrapped process converges. The result covers the most important continuous and discrete distribution families. Simulation studies in the Poisson and the normal distribution are also reported.
引用
收藏
页码:703 / 723
页数:20
相关论文
共 50 条
  • [21] Parametric and Non-parametric Estimates of Military Expenditure Probability Distribution
    Neubauer, Jiri
    Tejkal, Martin
    Odehnal, Jakub
    Ambler, Tereza
    38TH INTERNATIONAL CONFERENCE ON MATHEMATICAL METHODS IN ECONOMICS (MME 2020), 2020, : 396 - 402
  • [22] Parametric and Non-parametric Wind Distribution Model for Tangier Region
    Sefian, Hind
    Bahraoui, Fatima
    Bahraoui, Zuhair
    Batmi, Abdeladim
    ADVANCED INTELLIGENT SYSTEMS FOR SUSTAINABLE DEVELOPMENT (AI2SD'2019): VOL 7 - ADVANCED INTELLIGENT SYSTEMS FOR SUSTAINABLE DEVELOPMENT APPLIED IN ENERGY AND ELECTRICAL ENGINEERING, 2020, 624 : 213 - 220
  • [23] On Parametric (and Non-Parametric) Variation
    Smith, Neil
    Law, Ann
    BIOLINGUISTICS, 2009, 3 (04): : 332 - 343
  • [24] PARAMETRIC AND NON-PARAMETRIC MINIMA
    ANZELLOTTI, G
    MANUSCRIPTA MATHEMATICA, 1984, 48 (1-3) : 103 - 115
  • [25] Change-Point Tests for the Error Distribution in Non-parametric Regression
    Neumeyer, Natalie
    Van Keilegom, Ingrid
    SCANDINAVIAN JOURNAL OF STATISTICS, 2009, 36 (03) : 518 - 541
  • [26] Non-parametric estimation of the residual distribution
    Akritas, MG
    Van Keilegom, I
    SCANDINAVIAN JOURNAL OF STATISTICS, 2001, 28 (03) : 549 - 567
  • [27] NON-PARAMETRIC TREND TESTS FOR LEARNING DATA
    JONCKHEERE, AR
    BOWER, GH
    BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 1967, 20 : 163 - +
  • [28] Principal component decomposition of non-parametric tests
    Probab Theory Relat Fields, 2 (193):
  • [29] Non-Parametric Tests for Testing of Scale Parameters
    Goyal, Manish
    Kumar, Narinder
    JOURNAL OF MODERN APPLIED STATISTICAL METHODS, 2020, 19 (01)
  • [30] THE POWER OF CERTAIN NON-PARAMETRIC TESTS OF INDEPENDENCE
    HOEFFDING, W
    ANNALS OF MATHEMATICAL STATISTICS, 1947, 18 (04): : 607 - 607