Artificial intelligence enabled smart machining and machine tools

被引:0
|
作者
Yu Sung Chuo
Ji Woong Lee
Chang Hyeon Mun
In Woong Noh
Sina Rezvani
Dong Chan Kim
Jihyun Lee
Sang Won Lee
Simon S. Park
机构
[1] University of Calgary,Department of Mechanical and Manufacturing Engineering
[2] Sungkyunk-wan University,Department of Mechanical Engineering, Graduate School
[3] Ulsan National Institute of Science and Technology,Department of Mechanical Engineering
关键词
Artificial intelligence; Industry 4.0; Machine learning; Machine tools; Machining;
D O I
暂无
中图分类号
学科分类号
摘要
Artificial intelligence (AI) in machine tools offers diverse advantages, including learning and optimizing machining processes, compensating errors, saving energy, and preventing failures. Various AI techniques have been proposed and applied; however, many challenges still exist that inhibit the use of AI for machining tasks. This paper deals with different types and usage of AI technologies in machining operations such as predictive modelling, parameter optimization and control, chatter stability, tool wear, and energy conservation. We discuss the challenges of AI technologies, such as data quality, transferability, explainability, and suggest future directions to overcome them.
引用
收藏
页码:1 / 23
页数:22
相关论文
共 50 条
  • [21] Transparency of artificial intelligence/machine learning-enabled medical devices
    Shick, Aubrey A.
    Webber, Christina M.
    Kiarashi, Nooshin
    Weinberg, Jessica P.
    Deoras, Aneesh
    Petrick, Nicholas
    Saha, Anindita
    Diamond, Matthew C.
    NPJ DIGITAL MEDICINE, 2024, 7 (01)
  • [22] Transparency of artificial intelligence/machine learning-enabled medical devices
    Aubrey A. Shick
    Christina M. Webber
    Nooshin Kiarashi
    Jessica P. Weinberg
    Aneesh Deoras
    Nicholas Petrick
    Anindita Saha
    Matthew C. Diamond
    npj Digital Medicine, 7
  • [23] Artificial Intelligence Enabled Demand Response: Prospects and Challenges in Smart Grid Environment
    Khan, Muhammad Adnan
    Saleh, Ahmed Mohammed
    Waseem, Muhammad
    Sajjad, Intisar Ali
    IEEE ACCESS, 2023, 11 : 1477 - 1505
  • [24] Artificial intelligence enabled self-powered wireless sensing for smart industry
    Li, Mingxuan
    Wan, Zhengzhong
    Zou, Tianrui
    Shen, Zhaoyue
    Li, Mingzhen
    Wang, Chaoshuai
    Xiao, Xinqing
    CHEMICAL ENGINEERING JOURNAL, 2024, 492
  • [25] Artificial intelligence enabled robots for stay experience in the hospitality industry in a smart city
    Gupta, Shivam
    Modgil, Sachin
    Lee, Choong-Ki
    Cho, Minsook
    Park, Yaena
    INDUSTRIAL MANAGEMENT & DATA SYSTEMS, 2022, 122 (10) : 2331 - 2350
  • [26] Artificial Intelligence Enabled Smart Monitoring and Controlling of IoT-Green House
    Riskiawan, H. Y.
    Gupta, Nishu
    Setyohadi, D. P. S.
    Anwar, S.
    Kurniasari, A. A.
    Hariono, B.
    Firmansyah, M. H.
    Yogiswara, Y.
    Mansur, A. B. F.
    Basori, A. H.
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2024, 49 (03) : 3043 - 3061
  • [27] Artificial Intelligence Enabled Smart Monitoring and Controlling of IoT-Green House
    H. Y. Riskiawan
    Nishu Gupta
    D. P. S. Setyohadi
    S. Anwar
    A. A. Kurniasari
    B. Hariono
    M. H. Firmansyah
    Y. Yogiswara
    A. B. F. Mansur
    A. H. Basori
    Arabian Journal for Science and Engineering, 2024, 49 : 3043 - 3061
  • [28] Artificial intelligence enabled self-powered wireless sensing for smart industry
    Li, Mingxuan
    Wan, Zhengzhong
    Zou, Tianrui
    Shen, Zhaoyue
    Li, Mingzhen
    Wang, Chaoshuai
    Xiao, Xinqing
    Chemical Engineering Journal, 2024, 492
  • [29] Artificial intelligence enabled smart mask for speech recognition for future hearing devices
    Hameed, Hira
    Lubna, Muhammad
    Usman, Muhammad
    Kazim, Jalil Ur Rehman
    Assaleh, Khaled
    Arshad, Kamran
    Hussain, Amir
    Imran, Muhammad
    Abbasi, Qammer H.
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [30] Artificial intelligence-enabled smart mechanical metamaterials: advent and future trends
    Jiao, Pengcheng
    Alavi, Amir H.
    INTERNATIONAL MATERIALS REVIEWS, 2021, 66 (06) : 365 - 393