Low-temperature plasma-enhanced atomic layer deposition growth of WNxCy from a novel precursor for barrier applications in nanoscale devices

被引:0
|
作者
Zeng W. [1 ]
Wang X. [1 ]
Kumar S. [1 ]
Peters D.W. [2 ]
Eisenbraun E.T. [1 ]
机构
[1] College of Nanoscale Science and Engineering, University of Albany, Albany
[2] Praxair Inc., Tonawanda
来源
J Mater Res | 2007年 / 3卷 / 703-709期
关键词
Annealing - Atomic layer deposition - Copper - Crystal structure - Electric conductivity - Plasma applications - Surface roughness - Thermodynamic stability - Tungsten compounds;
D O I
10.1557/jmr.2007.0079
中图分类号
学科分类号
摘要
A low-temperature plasma-enhanced atomic layer deposition (PEALD) process has been developed for the growth of ultrathin WNxCy films, using a halide-free W precursor. A 32-nm-thick PEALD WNxCy film deposited using this process at 250 °C possesses a composition of W72C20N5, resistivity of ∼25 μΩ·cm, a root-mean-square (rms) surface roughness of 0.23 nm, and a thickness conformality of more than 80% on trench structures with a width of 120 nm and an aspect ratio of 11. The WNxCy films exhibited excellent thermal stability, whereby resistivity, thickness, surface roughness, and crystal structure were stable after 30 min anneals in 700 Torr, forming gas ambient at temperatures up to 700 °C. Copper diffusion barrier performance measurements show that a 9 nm thick WNxCy film could prevent copper diffusion after a 30 min anneal at 700 °C, while a 2-nm-thick film could prevent copper diffusion after a 30 min anneal at 500 °C. © 2007 Materials Research Society.
引用
收藏
页码:703 / 709
页数:6
相关论文
共 50 条
  • [1] Low-temperature plasma-enhanced atomic layer deposition growth of WNxCy from a novel precursor for barrier applications in nanoscale devices
    Zeng, Wanxue
    Wang, Xiaodong
    Kumar, Sumit
    Peters, David W.
    Eisenbraun, Eric T.
    JOURNAL OF MATERIALS RESEARCH, 2007, 22 (03) : 703 - 709
  • [2] Low-temperature growth of AIN thin films by plasma-enhanced atomic layer deposition
    Feng Jia-Heng
    Tang Li-Dan
    Liu Bang-Wu
    Xia Yang
    Wang Bing
    ACTA PHYSICA SINICA, 2013, 62 (11)
  • [3] Dielectric barrier layers by low-temperature plasma-enhanced atomic layer deposition of silicon dioxide
    Barako, Michael T.
    English, Timothy S.
    Roy-Panzer, Shilpi
    Kenny, Thomas W.
    Goodson, Kenneth E.
    THIN SOLID FILMS, 2018, 649 : 24 - 29
  • [4] Low-temperature growth of gallium oxide thin films by plasma-enhanced atomic layer deposition
    Mahmoodinezhad, Ali
    Janowitz, Christoph
    Naumann, Franziska
    Plate, Paul
    Gargouri, Hassan
    Henkel, Karsten
    Schmeisser, Dieter
    Flege, Jan Ingo
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2020, 38 (02):
  • [5] Low-temperature growth of SiO2 films by plasma-enhanced atomic layer deposition
    Lim, JW
    Yun, SJ
    Lee, JH
    ETRI JOURNAL, 2005, 27 (01) : 118 - 121
  • [6] Low-temperature SiON films deposited by plasma-enhanced atomic layer deposition method using activated silicon precursor
    Suh, Sungin
    Ryu, Seung Wook
    Cho, Seongjae
    Kim, Jun-Rae
    Kim, Seongkyung
    Hwang, Cheol Seong
    Kim, Hyeong Joon
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2016, 34 (01):
  • [7] Low-temperature deposition of aluminum oxide on polyethersulfone substrate using plasma-enhanced atomic layer deposition
    Yun, SJ
    Lim, JW
    Lee, JH
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2004, 7 (01) : C13 - C15
  • [8] A Selective BP/Si Contact Formed by Low-Temperature Plasma-Enhanced Atomic Layer Deposition
    A. S. Gudovskikh
    D. A. Kudryashov
    A. I. Baranov
    A. V. Uvarov
    I. A. Morozov
    Technical Physics Letters, 2021, 47 : 96 - 98
  • [9] Low-Temperature Plasma-Enhanced Atomic Layer Deposition of ZnMgO for Efficient CZTS Solar Cells
    Cui, Xin
    Sun, Kaiwen
    Huang, Jialiang
    Sun, Heng
    Wang, Ao
    Yuan, Xiaojie
    Green, Martin
    Hoex, Bram
    Hao, Xiaojing
    ACS MATERIALS LETTERS, 2023, 5 (05): : 1456 - 1465
  • [10] A Selective BP/Si Contact Formed by Low-Temperature Plasma-Enhanced Atomic Layer Deposition
    Gudovskikh, A. S.
    Kudryashov, D. A.
    Baranov, A., I
    Uvarov, A., V
    Morozov, I. A.
    TECHNICAL PHYSICS LETTERS, 2021, 47 (01) : 96 - 98