An observation-based scaling model for climate sensitivity estimates and global projections to 2100

被引:0
|
作者
Raphaël Hébert
Shaun Lovejoy
Bruno Tremblay
机构
[1] Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung,Department of Physics
[2] McGill University,Department of Atmospheric and Oceanic Sciences
[3] McGill University,undefined
来源
Climate Dynamics | 2021年 / 56卷
关键词
Global mean temperature; Projections; Climate sensitivity; RCP scenarios; Global warming; Scaling;
D O I
暂无
中图分类号
学科分类号
摘要
We directly exploit the stochasticity of the internal variability, and the linearity of the forced response to make global temperature projections based on historical data and a Green’s function, or Climate Response Function (CRF). To make the problem tractable, we take advantage of the temporal scaling symmetry to define a scaling CRF characterized by the scaling exponent H, which controls the long-range memory of the climate, i.e. how fast the system tends toward a steady-state, and an inner scale τ≈2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau \approx 2$$\end{document}   years below which the higher-frequency response is smoothed out. An aerosol scaling factor and a non-linear volcanic damping exponent were introduced to account for the large uncertainty in these forcings. We estimate the model and forcing parameters by Bayesian inference which allows us to analytically calculate the transient climate response and the equilibrium climate sensitivity as: 1.7-0.2+0.3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.7^{+0.3} _{-0.2}$$\end{document}  K and 2.4-0.6+1.3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2.4^{+1.3} _{-0.6}$$\end{document}  K respectively (likely range). Projections to 2100 according to the RCP 2.6, 4.5 and 8.5 scenarios yield warmings with respect to 1880–1910 of: 1.5-0.2+0.4K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.5^{+0.4}_{-0.2}K$$\end{document}, 2.3-0.5+0.7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2.3^{+0.7}_{-0.5}$$\end{document}  K and 4.2-0.9+1.3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4.2^{+1.3}_{-0.9}$$\end{document}  K. These projection estimates are lower than the ones based on a Coupled Model Intercomparison Project phase 5 multi-model ensemble; more importantly, their uncertainties are smaller and only depend on historical temperature and forcing series. The key uncertainty is due to aerosol forcings; we find a modern (2005) forcing value of [-1.0,-0.3]Wm-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[-1.0, -0.3]\, \,\,\mathrm{Wm} ^{-2}$$\end{document} (90 % confidence interval) with median at -0.7Wm-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-0.7 \,\,\mathrm{Wm} ^{-2}$$\end{document}. Projecting to 2100, we find that to keep the warming below 1.5 K, future emissions must undergo cuts similar to RCP 2.6 for which the probability to remain under 1.5 K is 48 %. RCP 4.5 and RCP 8.5-like futures overshoot with very high probability.
引用
收藏
页码:1105 / 1129
页数:24
相关论文
共 50 条
  • [1] An observation-based scaling model for climate sensitivity estimates and global projections to 2100
    Hebert, Raphael
    Lovejoy, Shaun
    Tremblay, Bruno
    [J]. CLIMATE DYNAMICS, 2021, 56 (3-4) : 1105 - 1129
  • [3] Observation-based blended projections from ensembles of regional climate models
    Esther Salazar
    Dorit Hammerling
    Xia Wang
    Bruno Sansó
    Andrew O. Finley
    Linda O. Mearns
    [J]. Climatic Change, 2016, 138 : 55 - 69
  • [4] Observation-based blended projections from ensembles of regional climate models
    Salazar, Esther
    Hammerling, Dorit
    Wang, Xia
    Sanso, Bruno
    Finley, Andrew O.
    Mearns, Linda O.
    [J]. CLIMATIC CHANGE, 2016, 138 (1-2) : 55 - 69
  • [5] Regional Climate Sensitivity- and Historical-Based Projections to 2100
    Hebert, Raphael
    Lovejoy, Shaun
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2018, 45 (09) : 4248 - 4254
  • [6] Evaluation of sea salt aerosols in climate systems: global climate modeling and observation-based analyses*
    Chen, Yi-Chun
    Li, Jui-Lin F.
    Lee, Wei-Liang
    Diner, David J.
    Garay, Michael J.
    Jiang, Jonathan H.
    Wang, Yi-Hui
    Yu, Jia-Yuh
    Kalashnikova, Olga, V
    [J]. ENVIRONMENTAL RESEARCH LETTERS, 2020, 15 (03):
  • [7] Observation-Based Estimates of Global and Basin Ocean Meridional Heat Transport Time Series
    Trenberth, Kevin E.
    Zhang, Yongxin
    Fasullo, John T.
    Cheng, Lijing
    [J]. JOURNAL OF CLIMATE, 2019, 32 (14) : 4567 - 4584
  • [8] Constraining future terrestrial carbon cycle projections using observation-based water and carbon flux estimates
    Mystakidis, Stefanos
    Davin, Edouard L.
    Gruber, Nicolas
    Seneviratne, Sonia I.
    [J]. GLOBAL CHANGE BIOLOGY, 2016, 22 (06) : 2198 - 2215
  • [9] Sensitivity of Ozone Formation in Summer in Jinan Using Observation-Based Model
    Xu, Chenxi
    He, Xuejuan
    Sun, Shida
    Bo, Yu
    Cui, Zeqi
    Zhang, Zhanchao
    Dong, Hui
    [J]. ATMOSPHERE, 2022, 13 (12)
  • [10] Observation-based Performance Sensitivity Analysis for POMDPs
    Ji, Zhe
    Jiang, Xiaofeng
    Xi, Hongsheng
    [J]. 2015 34TH CHINESE CONTROL CONFERENCE (CCC), 2015, : 1671 - 1676