X-Trees and Weighted Quartet Systems

被引:0
|
作者
Andreas W. M. Dress
Péter L Erdös
机构
[1] University of Bielefeld,Forschungsschwerpunkt Mathematisierungs
[2] Hungarian Academy of Sciences,Strukturbildungsprozesse
关键词
biological systematics; phylogeny; phylogenetic combinatorics; evolutionary trees; tree reconstruction; X-trees; quartet methods; quartet systems; weighted quartet systems;
D O I
10.1007/s00026-003-0179-x
中图分类号
学科分类号
摘要
In this note, we consider a finite set X and maps W from the set $ \mathcal{S}_{2|2} (X) $ of all 2, 2- splits of X into $ \mathbb{R}_{\geq 0} $. We show that such a map W is induced, in a canonical way, by a binary X-tree for which a positive length $ \mathcal{l} (e) $ is associated to every inner edge e if and only if (i) exactly two of the three numbers W(ab|cd),W(ac|bd), and W(ad|cb) vanish, for any four distinct elements a, b, c, d in X, (ii) $ a \neq d \quad\mathrm{and}\quad W (ab|xc) + W(ax|cd) = W(ab|cd) $ holds for all a, b, c, d, x in X with #{a, b, c, x} = #{b, c, d, x} = 4 and $ W(ab|cx),W(ax|cd) $ > 0, and (iii) $ W (ab|uv) \geq \quad \mathrm{min} (W(ab|uw), W(ab|vw)) $ holds for any five distinct elements a, b, u, v, w in X. Possible generalizations regarding arbitrary $ \mathbb{R} $-trees and applications regarding tree-reconstruction algorithms are indicated.
引用
收藏
页码:155 / 169
页数:14
相关论文
共 50 条
  • [31] Quartet decomposition server: a platform for analyzing phylogenetic trees
    Mao, Fenglou
    Williams, David
    Zhaxybayeva, Olga
    Poptsova, Maria
    Lapierre, Pascal
    Gogarten, J. Peter
    Xu, Ying
    BMC BIOINFORMATICS, 2012, 13
  • [32] Edge ranking of weighted trees
    Dereniowski, D
    DISCRETE APPLIED MATHEMATICS, 2006, 154 (08) : 1198 - 1209
  • [33] Group Inverses of Weighted Trees
    Raju Nandi
    Bulletin of the Malaysian Mathematical Sciences Society, 2024, 47
  • [34] ON WEIGHTED MULTIWAY CUTS IN TREES
    ERDOS, PL
    SZEKELY, LA
    MATHEMATICAL PROGRAMMING, 1994, 65 (01) : 93 - 105
  • [35] Connected searching of weighted trees
    Dereniowski, Dariusz
    THEORETICAL COMPUTER SCIENCE, 2011, 412 (41) : 5700 - 5713
  • [36] QUARTET CONSISTENCY COUNT METHOD FOR RECONSTRUCTING PHYLOGENETIC TREES
    Cho, Jin-Hwan
    Joe, Dosang
    Kim, Young Rock
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2010, 25 (01): : 149 - 160
  • [37] RECONSTRUCTING APPROXIMATE PHYLOGENETIC TREES FROM QUARTET SAMPLES
    Snir, Sagi
    Yuster, Raphael
    SIAM JOURNAL ON COMPUTING, 2012, 41 (06) : 1466 - 1480
  • [38] FPTASs for trimming weighted trees
    Xiao, Mingyu
    Fukunaga, Takuro
    Nagamochi, Hiroshi
    THEORETICAL COMPUTER SCIENCE, 2013, 469 : 105 - 118
  • [39] OPTIMUM DOMINATION IN WEIGHTED TREES
    NATARAJAN, KS
    WHITE, LJ
    INFORMATION PROCESSING LETTERS, 1978, 7 (06) : 261 - 265
  • [40] Computing the quartet distance between trees of arbitrary degree
    Christiansen, C
    Mailund, T
    Pedersen, CNS
    Randers, M
    ALGORITHMS IN BIOINFORMATICS, PROCEEDINGS, 2005, 3692 : 77 - 88